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Abstract

Researchers in the Singular-Perturbation-Problems (SPP) community have largely focused
on developing codes to solve problems with exponential layers. Such codes, while generally
effective in solving the problems for which they were designed, are difficult or impossible to
adapt to problems with non-exponential layers, which are incomparably broader than expo-
nential layers. The purpose of this paper is to demonstrate the need for increased efforts to
study non-exponential layers and to develop appropriate new approaches to solving problems
involving such layers, in particular new grid-clustering algorithms that rely on the layer
structure to solve both model and practical problems. The paper reviews recent achievements
in this area. It summarises the current state of knowledge on layer structures, including
descriptions of the types of layers discovered so far, with emphasis on non-exponential ones.
The paper outlines model problems involving such layers and the conditions under which
they occur, describes specific techniques for generating layer-eliminating coordinate trans-
formations and layer-resolving grids, outlines methods for solving certain model problems,
and discusses possible applications of the methods to the numerical analysis of practical
problems involving layers. It illustrates the theoretical and numerical methodology for a
specific problem involving non-exponential layers.

Keywords: Small Parameter, Turning Points, Interior and Boundary Layers, Numerical
Grids, Uniform Convergence.

1. INTRODUCTION

Boundary and interior layers present serious obstacles to the efficient calculation of equations mod-
elling many technical problems. It is a difficult task to develop uniformly convergent algorithms for
solving such problems. Resources provided by numerical grids can significantly reduce the adverse
effects of these layers on the accuracy of numerical experiments. Their efficient application, how-
ever, requires a detailed knowledge of the layers themselves: their types and structures; situations
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in which they are encountered; and means for struggling with them, in particular, rules for grid
clustering in layers.

Think about methods in vaccine research: biological researchers carefully investigate the features of
each of the great variety of viruses which have been discovered; by this method, suitable remedies
for many divergent strains of disease have been contrived. To win the fight against layers, experts in
numerical methods ought to act similarly, but largely do not. While universally acknowledging the
very great importance of layers in both pure and applied mathematical science, researchers largely
continue to bear down on the narrow class of problems having mainly exponential layers, using
grids suitable only to such layers, making little effort to expand the range of problems to include
those having other types of layers.

In the more than 50 years since Bakhvalov published his paper [1], the conversation within the
SPP community has centered largely on problems with a small parameter (𝜀 = 0) affecting the
higher derivatives, having exponential layers. The well-known and widely accepted numerical grids
developed by Bakhvalov and Shishkin [2] are highly efficient for problems having only exponential-
type layers, typically represented by functions exp(−𝑏𝑥/𝜀𝑘). Such layers mainly occur in problems
for which the solutions of reduced (𝜀 = 0) problems do not have singularities.

Non-exponential types of layers require different forms of layer-resolving grids — grids above
and beyond those of Bakhvalov and Shishkin. Their grids are not suitable for tackling important
problems whose solutions have incomparably wider layers: power, logarithmic, and hybrid-type
boundary and interior layers (see [3] and [4]), and also require knowledge of the constant 𝑏 affecting
the width of the exponential layer, knowledge of which is not always available, as, for example,
for boundary layers in viscous-gas flows [5] or for interior layers in solutions to the quasilinear
problems discussed in [3]. For non-exponential types of layers, other forms of layer-resolving grids
are needed, which employ layer-eliminating coordinate mappings, in particular, those described
in [6] and in [4]. The very popularity of the grids contrived by Bakhvalov and Shishkin seems
to hinder researchers from considering other problems with non-exponential layers, which are not
handled by these grids. Many researchers concerned with solving practical problems prefer to use
their simple, unvaried approaches of grid clustering in zones of layers, without regard to the layers’
individual features, with the unfortunate consequence that many papers on SPP are now appearing
in the literature which are riddled with errors and false claims, with the further consequence that the
area of SPP is becoming heavily polluted with bad papers.

The majority of the SPP community is too blinkered with exponential blinders, as it were, seeming
to be unaware even of the existence of other layers, to see the nearly virgin territory presented by
problems with non-exponential layers, at the same time claiming boldly that they have developed
parameter-uniform numerical methods for the solution of problems having wide application in such
fields of the physical sciences and engineering as control theory, electrical networks, lubrication
theory, etc. Moreover, some authors, by using defective approaches, are contriving to prove that
evenwell-known problemswith interior turning points having power-of-type-2 layers now allegedly
have exponential layers, see for example [7] and a response [8] to this paper. Unfortunately,
numerous papers on SPP are now surfacing in the literature which are plagued with errors and false
claims. As a result, the field of SPP is now heavily contaminated with poor papers. The authors, who
are responsible for estimating solution derivatives, must improve their skills in handling problems
with turning points that have non-exponential layers if they are to avoid serious mistakes which
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reflect poorly on everyone involved, including journals publishing the papers as well as the authors
themselves.

In contrast to the abundant attention paid to problems having exponential layers, problems having
non-exponential layers are in oblivion, like orphans, at present nearly unexplored. The author of the
present paper is committed to studying both exponential and non-exponential types of layers (see
[3]), developing appropriate new approaches of grid clustering for solving problems having such
layers (see [4]), and contributing to the investigation of practical problems (see [9]). The author is
certain that these activities hold great interest, and urges the elder generation of the SPP community
to direct young researchers to explore regions of the field far more innovative and profitable, instead
of clinging doggedly to the exponential theme. This paper aims at awakening the interest — of
at least some members of the SPP community — in the multipolar area of problems having non-
exponential as well as exponential layers. It is clear that the potential of grid-generation technologies
can only be realized with a proper understanding of the multipolar character of layer structures.
The author hopes to persuade the SPP community that the current bias in favour of problems with
exponential layers represents a crowded collective treading of water which creates a bottleneck in
the development of algorithms for solving practical, real-world, problems.

The present paper stresses the necessity of studying the variety of layers, their properties, and
methods for handling themwhile solving practical problems. It surveys current achievements in this
direction, which include: descriptions of model problems having layers of various types, and con-
ditions in which they are encountered; specific techniques for investigating them; grid-generation
algorithms for solving model problems; and possible approaches to applying the methods to analyze
practical problems having layers both discovered and as yet undiscovered. Insights contained may
be successfully employed in research to discover new techniques for solving problems with layers.
Some of these aspects were not sufficiently covered in previously published surveys [10]–[20].

2. GENERAL MODEL PROBLEM

Typical for the theoretical study of qualitative features arising in solutions to problems having
layers along a coordinate 𝑥 transversal to the layers is the following boundary-value problem for
an ordinary differential equation of the second order with a small parameter 𝜀 in the diffusion
coefficient:

−(𝜀 + 𝑑 (𝑥))𝜈𝑢′′ + 𝑣(𝑥, 𝑢)𝑢′ + 𝑓 (𝑥, 𝑢) = 0 , 𝑙0 < 𝑥 < 𝑙1 ,

𝑢(𝑙0, 𝜀) = 𝐴0, 𝑢(𝑙1, 𝜀) = 𝐴1 , (1)

where 1 ≫ 𝜀 > 0, 𝑑 (𝑥) ≥ 0, 𝑑 (𝑥) = 0 at some or all points of the interval [𝑙0, 𝑙1]. This simple
problem allows one to gain rather significant understanding of the issues involved in real physical
processes, in particular, those modelled by Navier-Stokes equations. Problem (1) is quite amenable
to qualitative studies of its solutions’ properties. Though representing a highly idealized case, it
nevertheless gives solid knowledge about the possible qualitative features of solutions in boundary
and interior layers; in particular, it provides a rather profound understanding of the variety and
complexity of the singularities arising in practical applications.
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The case with a constant diffusion coefficient (𝑑 (𝑥) = 0) in (1) is widely studied in the literature:
[21, 22, 23, 3]. This problem with 𝑑 (𝑥) = 𝑥 was formulated in the monograph of Polubarinova–
Kochina [24] to model filtration of a liquid in the neighborhood of a circular orifice of a small radius
𝑟 = 𝜀, while that with 𝜈 = 2 appears in the physics of motion of charges viewed as classical particles
(see Zamaraev, Khairutdinov, and Zhdanov [25]). Problem (1) with 𝑑 (𝑥) = 𝑥, 𝑣(𝑥, 𝑢) = 𝑎(𝑥),
𝜈 = 1, 𝑙0 = 0 and arbitrary 𝑎(𝑥), while for 𝜈 ≥ 2, but without a boundary turning point, i.e., when
𝑎(0) > 0, was analysed in [3], Sect. 3.4, while the case of a boundary turning point is discussed
in Sect. 4 of this paper. An evolutionary problem related to (1) with 𝑑 (𝑥) = 𝑥, 𝜈 = 2, modelling
diffusion-drift motion of charges, was originally investigated numerically by using special grids in
[26]. One more problem with 𝑑 (𝑥) = 𝑥2, 𝜈 = 1 and a single interior turning point was considered
in paper [27], while its generalization to evolutionary problems was discussed in [28].

2.1 Classification of Layers

Layers are classified by the qualitative behaviour of the corresponding singular functions inside the
layers (see [3], pp. 12–23), in particular, by their derivatives. At present, basic layers (exponential,
power-of-type-1 and -type-2, and logarithmic) and their combinations (hybrid types of layers) are
known for solutions to problem (1). Of course, solutions to this problem, not to mention to Navier-
Stokes equations, may have new types of layers that have not yet been discovered.

2.1.1 Exponential layers

The lion’s share of interest in the SPP community is paid to exponential types of layers, i.e., when
solution derivatives are estimated in the vicinity of a point 𝑥0 as

| 𝑢 (𝑖) (𝑥, 𝜀) |⩽ 𝑀 [𝜀−𝑖𝑘 exp(−𝑏 |𝑥 − 𝑥0 |/𝜀𝑘) + 1] , 𝑏 > 0 , 1 ⩽ 𝑖 ⩽ 𝑛 , 0 ≤ |𝑥 − 𝑥0 | ≤ 𝑚 , (2)

where the constant 𝑘 here and hereafter is referred to as the scale of the layer. Also, in this equation
and hereafter, by 𝑚, 𝑀, 𝑚𝑖 , 𝑀 𝑗 we designate positive constants independent of 𝜀.

An obvious simple representative of the function, designated as 𝑢𝑒 (𝑥, 𝜀), having the exponential
layer near 𝑥 = 0 and satisfying 𝑢𝑒 (0, 𝜀) = 0, 𝑢′𝑒 (0, 𝜀) > 0 is

𝑢𝑒 (𝑥, 𝜀) = 1 − exp(−𝑏𝑥/𝜀𝑘) , 𝑏 > 0 , 𝑥 ≥ 0 . (3)

Functions erf(𝑥/𝜀) and tanh(𝑥/𝜀) give other examples of exponential layers. It is well known that
such layers appear in solutions to problem (1) with 𝑑 (𝑥) = 0, 𝛼 = 1, namely,

−𝜀𝑢′′ + 𝑣(𝑥, 𝑢)𝑢′ + 𝑓 (𝑥, 𝑢) = 0, 0 < 𝑥 < 1, 𝑢(0) = 𝐴0, 𝑢(1) = 𝐴1, (4)

near 𝑥 = 0 of scale 𝑘 = 1when 𝑣(𝑥, 𝑢) < 0 and 𝑓𝑢 (𝑥, 𝑢) ≥ 0; and of scale 𝑘 = 1/2when 𝑓𝑢 (𝑥, 𝑢) > 0
and 𝑣(𝑥, 𝑢) = 𝑎(𝑥), 𝑎(0) = 𝑎′(0) = 0, in particular, if 𝑣(𝑥, 𝑢) ≡ 0, see [3], pp. 92-93 and [29] for a
linear case. Less familiar cases of problems having exponential layers are outlined below.

Solutions to problem (1) with 𝑑 (𝑥) = 𝑥, 𝑣(𝑥, 𝑢) = 𝑎(𝑥), 𝑓𝑢 (𝑥, 𝑢) > 0, i.e.,

−(𝜀 + 𝑥)𝜈𝑢′′ + 𝑎(𝑥)𝑢′ + 𝑓 (𝑥, 𝑢) = 0, 0 < 𝑥 < 1, 𝑢(0) = 𝐴0, 𝑢(1) = 𝐴1, (5)
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have exponential boundary layers of scale 𝑘 = 𝜈 near 𝑥 = 0when 𝑎(0) > 0, 𝜈 ≥ 2, and 𝑓𝑢 (𝑥, 𝑢) > 0
(see [3], Sect. 3.4.2 and [30]). Interior exponential layers have solutions to semi-linear problems

−𝜀𝑢′′ + 𝑎(𝑥)𝑢′ + 𝑓 (𝑥, 𝑢) = 0, 0 < 𝑥 < 1, 𝑢(0) = 𝐴0, 𝑢(1) = 𝐴1, (6)

for which a coefficient before the first derivative is a function of an exponential-layer type as in
[31] and [32] or coefficients of the equation are discontinuous at interior points as in [33]. Boundary
exponential layers have solutions to problem (6) with a boundarymultiple turning point (see [3, 29]).
Boundary and interior exponential layers may have solutions to quasi-linear problem (4). One such
specific case, namely,

−𝜀𝑢′′ + 𝑢𝑢′ + 𝑓 (𝑥, 𝑢) = 0, 𝑓 (𝑥, 0) = 0, 𝑓𝑢 (𝑥, 𝑢) ≥ 𝑐 > 0, 0 < 𝑥 < 1, 𝑢(0) = 𝐴0, 𝑢(1) = 𝐴1, (7)

was considered in [3], Sect. 4.3, where it was shown that estimates for the first derivative of a
solution to (7) are largely described through the values of the boundary conditions 𝐴0 and 𝐴1 and the
functions 𝜑 𝑗 (𝑥), 𝑗 = 0, 1, which are solutions to the corresponding initial-value problems obtained
from the reduced (𝜀 = 0) problem:
𝜑′
𝑗 + 𝑓 (𝑥, 𝜑 𝑗)/𝜑 𝑗 = 0 , 𝑗 = 0, 1 , 𝑥 > 0 if 𝑗 = 0, 𝑥 < 1 if 𝑗 = 1, 𝜑𝑖 (𝑖) = 𝐴𝑖 , 𝑖 = 0, 1 .

The functions 𝜑 𝑗 (𝑥), 𝑗 = 0, 1, are strictly decreasing (𝜑′
𝑗 (𝑥) ≤ −𝑐, 𝑗 = 0, 1). In [3], pp. 128-129,

the following was proven

Theorem 1 Let 𝑢(𝑥, 𝜀) be a solution to problem (7) then |𝑢′(𝑥, 𝜀) | ≤ 𝑀 , 0 ≤ 𝑥 ≤ 1, when either
1. 𝜑0(1) = 𝐴1 , or 2. 𝐴0 ≥ 0 , 𝐴1 ≤ 0 , and 𝜑0(1) < 𝐴1 ;

|𝑢′(𝑥, 𝜀) | ≤ 𝑀
[
1 + 𝜀−1 exp

(
−𝑚 |𝑥 − 𝑥0 |

𝜀

)]
, 0 ≤ 𝑥 ≤ 1 , (8)

for some 𝑚 > 0, where 𝑥0 = 0 if 1. 𝐴0 ≤ 0 and 𝐴1 ≤ 0 or 2. 𝐴0 > 0, 𝐴1 < 0, and 𝐴0 + 𝜑1(0) < 0;
𝑥0 = 1 if 1. 𝐴0 ≥ 0 and 𝐴1 ≥ 0 or 2. 𝐴0 > 0 , 𝐴1 < 0 , and 𝐴1 + 𝜑0(1) > 0; 𝑥0 is a root
of the equation 𝜑0(𝑥, 𝐴0) + 𝜑1(𝑥, 𝐴1) = 0, if 𝐴0 > 0 𝐴1 < 0 , 𝜑0(1) > 𝐴1 , 𝐴0 + 𝜑1(0) ≥
0 , and 𝐴1 + 𝜑0(1) ≤ 0;

|𝑢′(𝑥, 𝜀) | ≤ 𝑀
[
1 + 𝜀−1 exp

(
−𝑚𝑥

𝜀

)
+ 𝜀−1 exp

(𝑚(𝑥 − 1)
𝜀

)]
, 0 ≤ 𝑥 ≤ 1 , (9)

for some 𝑚 > 0, if 𝐴0 < 0 and 𝐴1 > 0.

Estimates for higher derivatives have not yet been discovered.

One more case for an autonomous problem:

−𝜀𝑢′′ + 𝑎(𝑢)𝑢′ = 0, 0 < 𝑥 < 1, 𝑢(0) = 𝐴0, 𝑢(1) = 𝐴1, (10)

was formulated in [3], Sect. 1.3.3, as a simple model suitable for analysing possible boundary
and interior layers in gas flows. This problem comes down from a system of ordinary differential
equations simulating the shock wave structure of a steady heat-conducting gas flow:

𝑐
d𝑢
d𝑥

+ d𝑝
d𝑥

− 𝜀
d2𝑢

d𝑥2 = 0 , 0 < 𝑥 < 1 ,

𝑐
d𝑒
d𝑥

+ 𝑝
d𝑢
d𝑥

− 𝜀
(d𝑢
d𝑥

)2
− d

d𝑥

(
𝜒

d𝑇
d𝑥

)
= 0 ,

𝑐 = 𝜌𝑢 , (𝜌 𝑢 𝑒)(0, 𝜀) = (𝜌0 𝑢0 𝑒0) , (𝜌 𝑢 𝑒)(1, 𝜀) = (𝜌1 𝑢1 𝑒1) , (11)

147



https://wjphysics.com// | February 2024 Vladimir D. Liseikin

where 𝜌 is the density, 𝑢 the velocity, 𝑝 the pressure,𝑇 the temperature, 𝑒 the energy, 𝜀 the coefficient
of gas viscosity, and 𝜒 the coefficient of thermal conductivity. In the case 𝑒 = 𝑐𝑣𝑇 , 𝑝 = (𝜈 − 1)𝜌𝑒
we get from system (11)

−𝜀𝑢′′ + 𝑐[𝑢 + (𝜈 − 1)𝑒/𝑢]′ = 0 , 0 < 𝑥 < 1 ,

−(𝜀1𝑒
′)′ + 𝑐

(
𝑒 − 𝑢2

2
+ 𝑐2

𝑐
𝑢
) ′

= 0 , 0 < 𝑥 < 1 ,

𝑢(0) = 𝑢0 , 𝑢(1) = 𝑢1 , 𝑒(0) = 𝑒0 , 𝑒(1) = 𝑒1 , (12)

where 𝑐 = 𝜌0𝑢0, 𝜀1 = 𝜒/𝑐𝑣 , 𝑐2 = (−𝜀𝑢′ + 𝑐[𝑢 + (𝜈 − 1)𝑒/𝑢]) |𝑥=0. The functions 𝑢(𝑥) and 𝑒(𝑥) are
monotonic in the layers of their rapid variation. Hence the dependent variables 𝑢 and 𝑒 are connected
by the relations 𝑒 = 𝑒(𝑢), 𝑢 = 𝑢(𝑒). Therefore, problem (11) can be specified into two coupled
problems. In particular, with respect to the dependent variable 𝑢, we obtain a two-point boundary-
value problem of a simple autonomous quasilinear form (10), where 𝑎(𝑢) = 𝑐 d

d𝑢 [𝑢+(𝜈−1)𝑒(𝑢)/𝑢] .
An analogous problem can be formulated for the dependent variable 𝑒 in (11) if 𝜀1 is a constant.

Solutions to problem (10) can have exponential, power, and hybrid layers. It was shown that the
estimates for derivatives of the solution to this problem are largely described through the values of

a function 𝑏(𝑢) =
𝑢∫

𝐴0

𝑎(𝜂)d𝜂 and boundary conditions 𝐴0 and 𝐴1. In particular, solutions to this

problem have boundary exponential layers when 𝑢0 is a unique point of the absolute minimum of
𝑏(𝑢), and either 𝑢0 = 𝐴0 or 𝑢0 = 𝐴1 and 𝑎(𝑢0) ≠ 0, while in the case 𝑏(𝐴0) = 𝑏(𝐴1), 𝑏(𝑢) > 𝑏(𝐴0),
𝐴0 < 𝑢 < 𝐴1 and 𝑎(𝐴 𝑗) ≠ 0, 𝑗 = 0, 1, the solutions have an interior exponential layer in the vicinity
of a point 𝑥0 = 𝑎(𝐴1)/(𝑎(𝐴1) − 𝑎(𝐴0)). Estimates of solution derivatives for ordinary quasilinear
problems (7) and (10) were published in [30], [3], and [34].

Detailed descriptions of numerical and theoretical analysis of problems having exponential layers
are presented in surveys [15] and [19]. We describe further the cases of numerical analysis not
included in these and other surveys.

Numerical experiments for problem (7) having interior exponential layers were performed by Pe-
trenko in [34] (pp. 235-241) for 𝑓 (𝑥, 𝑢) = 𝑢 + 𝑢3, Vaseva in [6] (Sect. 8.4.5) for 𝑓 (𝑥, 𝑢) = exp(𝑥)𝑢,
Karasuljic’ in [4] (pp. 131-136) for 𝑓 (𝑥, 𝑢) = (cos(𝜋𝑥) + 4)𝑢 and 𝑓 (𝑥, 𝑢) = (cos(𝜋𝑥) + 2)𝑢, and by
O’Riordan and Quinn in [35] for 𝑓 (𝑥, 𝑢) = 𝑏(𝑥)𝑢.

Numerical experiments for problem (10) with exponential boundary and interior layers were per-
formed by Vaseva in [6] (pp. 254-261) and by Karasuljic’ in [4] (Sect. 4.3.8).

Some analysis for localising discontinuities of the limit solution to problem (10) and (4) with
𝑎(𝑥, 𝑢) = 𝑧(𝑢), 𝑓𝑢 (𝑥, 𝑢) ≥ 𝑐 > 0, was done by Lorenz in [36] and [37]. The same analysis of the
limit solution to problem (4) with 𝑎(𝑥, 𝑢) = 𝑓 (𝑥, 𝑢) = 𝑢, was done by [38], [39]. The applicability
of differential inequalities to this boundary-value problem analysis was discussed in [40].
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2.1.2 Power-of-type-1 layers

Derivatives of solutions having power-of-type-1 layers of scale 𝑘 in the vicinity of a point 𝑥0 are
estimated as

|𝑢 (𝑖) (𝑥, 𝜀) | ⩽ 𝑀 [𝜀𝑘𝑏/(𝜀𝑘 + |𝑥 − 𝑥0 |)𝑏+𝑖 + 1] , 𝑏 > 0 , 1 ⩽ 𝑖 ⩽ 𝑛 , 0 ⩽ |𝑥 − 𝑥0 | ⩽ 𝑚 , (13)

and not estimated by (2), since for an arbitrary 𝑏2 > 0

𝜀−𝑖𝑘 exp(−𝑏 |𝑥 − 𝑥0 |/𝜀𝑘) + 1 ≤ 𝑀 [𝜀𝑘𝑏2/(𝜀𝑘 + |𝑥 − 𝑥0 |)𝑏2+𝑖 + 1] , (14)

for some 𝑀 > 0, where 𝑀 is independent of 𝜀 but dependent on 𝑏 and 𝑏2. An obvious simple
representative of the function , designated as 𝑢𝑝1(𝑥, 𝜀), having the power-of-type-1 layer near 𝑥 = 0
and satisfying 𝑢𝑝1(0, 𝜀) = 0, 𝑢′𝑝1(0, 𝜀) > 0, is

𝑢𝑝1(𝑥, 𝜀) = 1 − 𝜀𝑘𝑏/(𝜀𝑘 + 𝑥)𝑏 , 𝑏 > 0 , 𝑥 ≥ 0 . (15)

Boundary power-of-type-1 layers of scale 𝑘 = 1/2 have solutions to problem (6) with a boundary
turning point 𝑥0 = 0 or 𝑥0 = 1 when 𝑎(𝑥0) = 0, 𝑎′(𝑥0) > 0 (see [3], Sect. 3.3). Note that problem
(6) with a boundary turning point is not always solved by the method of asymptotic expansions,
since the reduced problem (𝜀 = 0) may be ill-posed, and thus the values of solutions and/or the
derivatives of the reduced problem may be unbounded, though it is independent of 𝜀. Boundary
power-of-type-1 layers of scale 𝑘 = 1 have solutions to problem (5) with 𝜈 = 1, −𝑎(0) > 1 (see [3],
Sect. 3.4).

Interior power-of-type-1 layers of scale 𝑘 = 1 have solutions to problem (10) (see [3], Sect. 4.2.3).
It was shown that when 𝑏(𝐴0) = 𝑏(𝐴1), 𝑏(𝑢) > 𝑏(𝐴0) for 𝐴0 < 𝑢 < 𝐴1 and, besides this,
𝑏′(𝐴0) = 𝑏′(𝐴1) = 0, 𝑏′′(𝐴0) ≠ 0, 𝑏′′(𝐴1) ≠ 0, then

|𝑢 (𝑘 ) (𝑥, 𝜀) | ≤ 𝑀 [1 + 𝜀/(𝜀 + |𝑥 − 𝑥0 |)1+𝑘] , 0 ≤ 𝑥 ≤ 1 , (16)

where
𝑥0 =

1
√
𝑐0 + 𝑐1

[√
𝑐1 − 𝜀 ln 𝜀−1

( 𝑑0

(𝑐0)3/2 + 𝑑1

(𝑐1)3/2

)]
,

𝑐𝑖 = 𝑎′(𝐴𝑖)/2, 𝑑𝑖 = 𝑎′′ (𝐴𝑖)/6, 𝑖 = 1, 2. It was also shown (see [3], Sect. 4.2.2) that solutions to
problem (10) have boundary power-of-type-1 layers of scale 𝑘 = 1 when 𝑢0 is a unique point of the
absolute minimum of 𝑏(𝑢), and either 𝑢0 = 𝐴0 or 𝑢0 = 𝐴1 and 𝑎 (𝑝) (𝑢0) ≠ 0, 𝑎 (𝑖) (𝑢0) = 0, 𝑖 < 𝑝
for some 𝑝 > 0.

Numerical experiments with problem (6) having boundary power-of-type-1 layers were carried out
by Vaseva in [6], Sect. 8.1.4, Paasonen in [4], Sect. 3.4.3, and by Karasuljic’ in [4], Sect. 4.4.1.–
4.4.3. Problem (10) having boundary power-of-type-1 layers was analyzed numerically by Vaseva
in [6] (pp. 254-256 for 𝑎(𝑢) = 𝑢 − 1, 𝐴0 = 0, 𝐴1 = 1) and by Karasuljic’ in [4] (Sect. 4.4.5. for
𝑎(𝑢) = 𝑢 − 2, 𝐴0 = 0, 𝐴1 = 2). Numerical experiments with the same problem (10) but having
interior power-of-type-1 layers were conducted by Karasuljic’ in [41].
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2.1.3 Power-of-type-2 layers

Solutions having power-of-type-2 layers of scale 𝑘 in the vicinity of a point 𝑥0 are estimated as

|𝑢 (𝑖) (𝑥, 𝜀) | ⩽ 𝑀 [(𝜀𝑘 + |𝑥 − 𝑥0 |)𝑏−𝑖 + 1] , 𝑏 > 0 , 1 ⩽ 𝑖 ⩽ 𝑛 , 0 ⩽ |𝑥 − 𝑥0 | ⩽ 𝑚 . (17)

An obvious simple representative of the function, designated as 𝑢𝑝2(𝑥, 𝜀), having the power-of-
type-2 layer near 𝑥 = 0 and satisfying 𝑢𝑝2(0, 𝜀) = 0, 𝑢′𝑝2(0, 𝜀) > 0, is

𝑢𝑝2(𝑥, 𝜀) = (𝜀𝑘 + 𝑥)𝑏 − 𝜀𝑘𝑏 , 𝑏 > 0 , 𝑥 ≥ 0 . (18)

Boundary power-of-type-2 layers of scale 𝑘 = 1 have solutions to problem (5) with 𝜈 = 1, 1 >
−𝑎(0) > 0 (see [3], Sect. 3.4).

Interior power-of-type-2 layers of scale 𝑘 = 1/2 have solutions to problem (4) with 𝑣(𝑥, 𝑢) = 𝑎(𝑥),
𝑎(𝑥0) = 0, 𝑎′(𝑥0) < 0, 0 < 𝑥0 < 1 (see [3], Sect. 3.3, or in the linear case, [42]) and solutions to
problem (1) with 𝜈 = 1, 𝑑 (𝑥) = 𝑥2, 𝑣(𝑥, 𝑢) = 𝑎(𝑥), 𝑓 (𝑥, 𝑢) = 𝑐(𝑥)𝑢 − 𝑔(𝑥), i.e.,

−(𝜀 + 𝑥2)𝑢′′ + 𝑎(𝑥)𝑢′ + 𝑐(𝑥)𝑢 = 𝑔(𝑥), −1 < 𝑥 < 1, 𝑢(−1) = 𝐴0, 𝑢(1) = 𝐴1, (19)

when 𝑎(0) = 0, 𝑎′(0) + 𝑐(0) > 0 (see [27]).

Numerical experiments with problem (5) having boundary power-of-type-2 layers were conducted
by Vaseva in [6], Sect. 8.2.4, and Paasonen in [4], p.51. Numerical experiments with problem (6)
having interior power-of-type-2 layers were carried out by Vaseva in [6], Sect. 8.1.6, Paasonen in
[4], Sect. 3.4.3, and by Karasuljic’ in [4], Sect. 4.4.6.

2.1.4 Logarithmic layers

Solutions having logarithmic layers of scale 𝑘 in the vicinity of a point 𝑥0 are estimated as

|𝑢 (𝑖) (𝑥, 𝜀) | ⩽ 𝑀 [(𝜀𝑘 + |𝑥 − 𝑥0 |)−𝑖/ln(1/𝜀) + 1] , 1 ⩽ 𝑖 ⩽ 𝑛 , 0 ⩽ |𝑥 − 𝑥0 | ⩽ 𝑚 . (20)

An obvious simple representative of a function, designated as 𝑢𝑙 (𝑥, 𝜀), having a logarithmic layer
near 𝑥 = 0 and satisfying 𝑢𝑙 (0, 𝜀) = 0, 𝑢′𝑙 (0, 𝜀) > 0, is

𝑢𝑙 (𝑥, 𝜀) = 1 − ln(𝜀𝑘 + 𝑥)/ln(𝜀) , 𝑥 ≥ 0 . (21)

Boundary logarithmic layers of scale 𝑘 = 1 have solutions to problem (5) with 𝜈 = 1, 𝑎(0) = −1
(see [3], Sect. 3.4). Numerical experiments over this problem with a boundary logarithmic layer
were conducted by Vaseva in [6], Sect.8.2.5, Paasonen in [4], Sect. 3.5.2, and by Karasuljic’ in [4],
Sect. 4.5.

2.1.5 Hybrid layers

Hybrid layers have solutionswhose derivatives are estimated by combinations of estimates for single
basic layers from (2), (13), (17), and (20), for example, by a combination of power-of-type-2 layer
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of scale 𝑘 (13) and power-of-type 1 layers of scale 𝑘 (17):

|𝑢 (𝑖) (𝑥, 𝜀) | ⩽ 𝑀 [𝜀𝑘𝑏/(𝜀𝑘 + 𝑥)𝑏+𝑖 + (𝜀𝑘 + 𝑥)𝑑−𝑖 + 1] , 𝑏 > 0 , 𝑑 > 0 ,

1 ⩽ 𝑖 ⩽ 𝑛 , 0 ⩽ 𝑥 ⩽ 𝑚 .
(22)

Estimates of derivatives of a solution 𝑢(𝑥, 𝜀) having this hybrid layer in the vicinity of an arbitrary,
in particular, interior, point 𝑥0 are obtained from formula (22) by substituting |𝑥 − 𝑥0 | for 𝑥.

Estimates for interior hybrid layers in the vicinity of an interior point 𝑥0 can also be represented by
the following combination of basic estimates, for example, (13) and (17) with 𝑥 replaced by |𝑥−𝑥0 |:

|𝑢 (𝑖) (𝑥, 𝜀) | ≤
{
𝑀 [𝜀𝑘𝑏/(𝜀𝑘 + 𝑥0 − 𝑥)𝑏+𝑖 + 1] , 𝑚1 ≤ 𝑥 ≤ 𝑥0 ,

𝑀 [(𝜀𝑘 + 𝑥 − 𝑥0)𝑏−𝑖 + 1] , 𝑚2 ≥ 𝑥 ≥ 𝑥0 .
(23)

Such a layer is formed by two contiguous layers of power-of-1 and power-of-2 types, both of scale
𝑘 . Of course, hybrid layers in (22) and (23) may be composed of layers of different types and scales.
Such hybrid layers may have solutions to systems of equations (see [3], Chap. 5).

Hybrid boundary layers of scale 𝑘 = 1/2 near 𝑥 = 0 have solutions to problem (6) with 𝑎(0) = 0,
𝑎′(0) < 0 (see [3], pp. 80-86). These layers are combinations of power-of-type-1 and power-of-
type-2 layers, while in the case 𝑓 (𝑥, 𝑢) = 𝑐(𝑥)𝑢 + 𝑔(𝑥) or 𝑓 (𝑥, 𝑢) = 𝑥𝑤(𝑥, 𝑢), 𝑤𝑢 (𝑥, 𝑢) > 0, they
are combinations of exponential and power-of-type-2 layers see ([43] and [3], Sect. 3.3.2). It was
demonstrated that solutions to problem (19) with 𝑎(0) = 0, 𝑎′(0) + 𝑐(0) ≤ 0 exhibit hybrid interior
layers of scale 𝑘 = 1/2 which are combinations of power-of-first-type and power-of-second-type
layers. Interior hybrid layers of scale 𝑘 = 1 have also solutions to problem (10) when the function

𝑏(𝑢) =
𝑢∫

𝐴0

𝑎(𝜂)d𝜂 has two or more points of its absolute minimum (see [3], pp. 125-127).

Numerical experiments with problem (6) having boundary hybrid layers were performed by Vaseva
in [6], section 8.1.7 and Paasonen in [4], Sect. 3.4.5. Numerical experiments on problem (10)
having interior hybrid layers were carried out by Karasuljic’ in [4], Sect. 4.6.1.

Note that such classification of layers presented in this Sect. 2 is extended to cases where 𝑖𝑡ℎ
derivatives for any layer are uniformly bounded for 𝑖 < 𝑗 , 𝑗 > 1, while they are estimated by
a corresponding to this layer formula from (2), (13), (17), (20), (22), and (23), where the index 𝑖 + 𝑗
replaces the index 𝑖 in its left part.

2.1.6 Layer zone

A layer zone with respect to the 𝑛th derivative of a function 𝑢(𝑥, 𝜀) is the narrowest interval in
which this derivative tends to ∞ inside the interval when 𝜀 → 0, while outside it is bounded by a
constant 𝑀 . We denote by Δ𝑏,𝑛

𝑒 , Δ𝑏,𝑛
𝑝1 , Δ

𝑏,𝑛
𝑝2 , and Δ𝑛

𝑙 the width of the corresponding exponential,
power-of-type-1, power-of-type-2 and logarithmic layer. Using the basic majorants (2), (13), (17),
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(20), of the function derivatives in these layers of scale 𝑘 , we obtain

Δ𝑏,𝑛
𝑒 =

𝜀𝑘𝑛

𝑏
ln 𝜀−𝑘 , Δ𝑏,𝑛

𝑝1 = 𝑚2𝜀
𝑘𝑏/(𝑏+1) ,

Δ𝑏,𝑛
𝑝2 = 0 , if 𝑛 ≤ 𝑏 , Δ𝑏,𝑛

𝑝2 = 𝑚3 , if 𝑛 > 𝑏 ,

Δ𝑛
𝑙 =

𝑚4

(ln(1 + 𝜀−𝑘))1/𝑛 .

(24)

Note that the constants 𝑘 , 𝑏, and 𝑚𝑖 are individual for each equation in (24). For the interior hybrid
layer near a point 𝑥 = 𝑥0 determined by estimates (23) its width related to the 𝑛th derivative is
Δ𝑏,𝑛
𝑝1 + Δ𝑏,𝑛

𝑝2 , while for the hybrid layer near a point 𝑥 = 𝑥0 determined by estimates (22) its width is
max{Δ𝑏,𝑛

𝑝1 ,Δ
𝑏,𝑛
𝑝2 }.

We see that the widths of the basic types of layers for small values of the parameter 𝜀 and the same
scale 𝑘 are related as follows:

Δ𝑏,𝑛1
𝑒 < Δ𝑏,𝑛2

𝑒 , Δ𝑏,𝑛1
𝑝1 < Δ𝑏,𝑛2

𝑝1 , Δ𝑛1
𝑙 < Δ𝑛2

𝑙 , Δ𝑏,𝑛1
𝑝2 ≤ Δ𝑏,𝑛2

𝑝2 , if 𝑛1 < 𝑛2;

Δ𝑏1,𝑛
𝑒 < Δ𝑏2,𝑛

𝑒 , Δ𝑏1,𝑛
𝑝1 < Δ𝑏2,𝑛

𝑝1 , Δ𝑏1,𝑛
𝑝2 ≤ Δ𝑏2,𝑛

𝑝2 , if 𝑏1 > 𝑏2;

Δ𝑏,𝑛
𝑒 ≪ Δ𝑏,𝑛

𝑝1 ≪ Δ𝑛
𝑙 , for 𝑛 > 0; Δ𝑛

𝑙 ≪ Δ𝑏,𝑛
𝑝2 , for 𝑛 > 𝑏.

(25)

The first line of these inequalities indicates that the higher the order of the numerical algorithm and
hence the higher the derivatives of the solution in the truncation error, the wider the layer and hence
the wider the zone for grid clustering should be. The second line shows that the width of the layer
increases with decreasing 𝑏. From the third line we can conclude that exponential layers are the
narrowest of the layers described. As a result, layer-resolving grids designed for solving problems
having exponential layers may not be efficient for solving problems having wider non-exponential
layers.

The centre of a layer is a zone where the derivatives have large values compared to the values at
other points in the layer. The width of the centre of a layer of scale 𝑘 is 𝑚𝜀𝑘 . The rest of the layer
is called its transition part. The transition part is incomparably wider than the centre of the layer.
The value of the respective derivative in the layer is reduced from a large value in the centre, and
gradually in the transition part, to a uniformly limited value at the boundary of the layer.

2.1.7 A remark about another type of layers

For a problem which is not of form (1), namely,

𝜀𝑢′′ = (𝑢′)2 , 0 < 𝑥 < 1 , 𝑢(0, 𝜀) = 1 , 𝑢(1, 𝜀) = 0 ,

presented in the monograph by Chang and Howes [45], the exact solution is

𝑢(𝑥, 𝜀) = −𝜀 ln[𝑥 + (1 − 𝑥) exp(−1/𝜀)] , 0 ≤ 𝑥 ≤ 1 ,

and consequently

𝑢 (𝑘 ) (𝑥, 𝜀) = (−1)𝑘 (𝑘 − 1)! −𝜀[1 − exp(−1/𝜀)]𝑘
[𝑥 + (1 − 𝑥) exp(−1/𝜀)]𝑘

, 𝑘 ≥ 1 , 0 ≤ 𝑥 ≤ 1 .
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This gives us |𝑢 (𝑖) (0, 𝜀) | ≈ 𝜀 exp(𝑖/𝜀) and so this boundary–layer function is not of the types
described in sections 2.1.1–2.1.6. One reason for the difficulty is that a solution should be found by
the power series in exp(−𝜀−1)/𝜀 rather than 𝜀, which is not comparable.

3. TRANSFORMATIONS ELIMINATING LAYERS

The numerical algorithm advocated by the author of this paper for solving (1) is based on piece-wise
smooth layer–damping coordinate transformations 𝑥(𝜉, 𝜀) : [0, 1] → [𝑙0, 𝑙1] in compliance with a
basic principle: they are to eliminate singularities of high order of solutions 𝑢(𝑥, 𝜀) at each interval
[𝑎𝑖 , 𝑏𝑖] of smoothness; i. e., the high–order derivatives of any concrete solution with respect to the
new coordinate 𝜉 are to have the following bounds:��� di

d𝜉 i 𝑢[𝑥(𝜉, 𝜀), 𝜀]
��� ≤ 𝑀 , 𝑖 ≤ 𝑛 , 𝑎𝑖 ≤ 𝜉 ≤ 𝑏𝑖 , (26)

where the constant 𝑀 is independent of the parameter 𝜀, and the number 𝑛 is dependent on the order
of the approximation of the problem: the higher the order, the larger the number 𝑛 will be. With
the help of such transformations, any problem can be solved by using high order approximations
in the physical interval 𝑥 on layer–resolving grids defined by mapping the nodes of a uniform
grid with suitable coordinate transformations 𝑥(𝜉, 𝜀), as in [47]. It is proposed that by using the
layer–resolving grids obtained by transformations 𝑥(𝜉, 𝜀) satisfying (26), 𝜀−uniform high-order
convergence will be demonstrated for schemes of high order in the physical interval 𝑥. Moreover,
the numerical solution can be interpolated 𝜀−uniformly from grid points to the entire interval with
the same high-order accuracy.

Univariate transformations 𝑥(𝜉, 𝜀) eliminating singularities of solutions to singularly perturbed prob-
lems on the interval [𝑙0, 𝑙1] can be generated eithe explicitly using functions inverse to basic repre-
sentatives (3), (15), (18), and (21) of layers or implicitly by solving the following problem:

d
d𝜉

[dx
d𝜉

𝜓(𝑥, 𝜀)
]
= 0 , 𝑥(0, 𝜀) = 𝑙0 , 𝑥(1, 𝜀) = 𝑙1 , 0 ≤ 𝜉 ≤ 1 , (27)

where 𝜓(𝑥, 𝜀) is a suitable weight function. Such an approach, based on (27) and referred to as
the equidistribution principle, has been reported by a number of researchers. The original one-
dimensional integral formulation of the equidistribution principle was proposed by Boor in [51],
while one-dimensional and multidimensional differential and variational versions of this principle
were presented in [52], [53], [54], [55], [62], [63], [64], and [9].

3.1 Bound on the First Derivative

A necessary condition for having such transformations satisfying (26) gives formula (2.26) from

[3] for the first derivative of a solution to (1) with 𝑓𝑢 (𝑥, 𝑢) > 0, namely,
𝑙1∫
𝑙0

|𝑢′(𝑥, 𝜀) |d𝑥 ≤ 𝑀, i.e.,

the variation of the solution 𝑢(𝑥, 𝜀) on the interval [𝑙0, 𝑙1] is uniformly bounded. In this case, a
transformation 𝑥(𝜉, 𝜀) satisfying (26) exist at least for 𝑛 = 1 (see [3], pp.185-186). Therefore, for
the purpose of defining explicitly a layer-damping transformations 𝑥(𝜉, 𝜀) : [0, 1] → [𝑙0, 𝑙1], as in
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[4], pp. 44-46, 52-50, applied for generating layer-resolving grids by the formula 𝑥𝑖 = 𝑥(𝑖/𝑁, 𝜀),
𝑖 = 0, 1, . . . , 𝑁, we must have estimate

|𝑢′(𝑥, 𝜀) | ≤ 𝜙(𝑥, 𝜀) and
𝑙1∫

𝑙0

𝜙(𝑥, 𝜀)d𝑥 ≤ 𝑀 . (28)

Such estimate is valid for the first derivative of functions with exponential, power-of-type-1, power-
of-type-2, logarithmic, and hybrid layers described in Sect. 2.

3.2 Bounds on the Higher Derivatives

In order to eliminate singularities of order 𝑛 higher than 1, one needs a knowledge of certain
estimates of solution derivatives up to some order 𝑛1. In particular, the transformation 𝑥(𝜉, 𝜀), which
eliminates the singularities of 𝑢(𝑥, 𝜀) up to the second order, should, following (26) and [55], be
such that |d2𝑢1/d𝜉2 | ≤ 𝑀, i.e.,���d2𝑢

d𝑥2

(d𝑥
d𝜉

)2
+ d𝑢

d𝑥
d2𝑥

d𝜉2

��� ≤ 𝑀 , 0 ≤ 𝜉 ≤ 1 . (29)

It seems that in order to generate the necessary transformation 𝑥(𝜉, 𝜀) explicitly, an appropriate
estimate is needed not only for the first derivative but for the second derivative of 𝑢(𝑥, 𝜀) as well. It
is typically suggested, in applications to singularly perturbed equations, that the required transfor-
mation 𝑥(𝜉, 𝜀) can be obtained from (27), where 𝜓(𝑥, 𝜀) is a majorant of the square root of |d2𝑢/d𝑥2 |
and a constant, namely, √

|d2𝑢/d𝑥2 | + 1 ≤ 𝜓(𝑥, 𝜀) , 0 ≤ 𝑥 ≤ 1 , (30)

where 𝜓(𝑥, 𝜀) satisfies (28), and consequently∫ 1

0
(
√
|d2𝑢/d𝑥2 | + 1)d𝑥 ≤ 𝑀 .

In this case, ���d2𝑢

d𝑥2 [𝑥(𝜉, 𝜀)]
(d𝑥
d𝜉

(𝜉, 𝜀)
)2��� ≤ 𝑀 , 0 ≤ 𝜉 ≤ 1 ,

and so the first item of (29) is really uniformly bounded.

Since from (27) for 𝑙0 = 0, 𝑙1 = 1 we get

dx
d𝜉

(𝜉, 𝜀) = 𝑐/𝜓(𝑥(𝜉, 𝜀), 𝜀), 𝑥(0, 𝜀) = 0, 𝑥(1, 𝜀) = 1, 0 ≤ 𝜉 ≤ 1, 𝑐 =
∫ 1

0
𝜓(𝑥, 𝜀)dx,

therefore
d2𝑥

d𝜉2 (𝜉, 𝜀) = − 𝑐2

𝜓3 [𝑥(𝜉, 𝜀), 𝜀]
d𝜓
d𝑥

[𝑥(𝜉, 𝜀), 𝜀] , 0 ≤ 𝜉 ≤ 1. (31)

However, relying on (30) for the function 𝑢(𝑥, 𝜀) = exp(−𝑥/𝜀)−𝑥, having an exponential boundary
layer, we can assume 𝜓(𝜉, 𝜀) = 1 + 𝜀−1 exp(−𝑥/(2𝜀)), and so, from (31)

d2𝑥

d𝜉2 =
𝑐2𝜀−2 exp(−𝑥/(2𝜀))

2(1 + 𝜀−1 exp(−𝑥/(2𝜀)))3 =
𝑐2

16𝜀
,
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when 𝑥 = −2𝜀 ln 𝜀. Thus, in order to generate an explicit coordinate transformation 𝑥(𝜉, 𝜀) pro-
viding (29), it is not sufficient to use in (27) a function 𝜓(𝑥, 𝜀) satisfying (30). It appears that this
function 𝜓(𝑥, 𝜀) should satisfy (28) and

(|d4𝑢/d𝑥4 |)1/4 + 1 ≤ 𝜓(𝑥, 𝜀), 0 ≤ 𝑥 ≤ 1.

Analogous statements hold for obtaining mappings 𝑥(𝜉, 𝜖) that eliminate arbitrary layers up to 𝑛 ≥ 1
using (27). Specifically, the function 𝜓(𝑥, 𝜖) must satisfy (28) and the condition

|𝑢 ( 𝑗 ) (𝑥, 𝜀) |1/ 𝑗 + 1 ≤ 𝜓(𝑥, 𝜀) , 𝑗 = 𝑛2 , 0 ≤ 𝑥 ≤ 1 ,

(see [6]). Some procedures for generating such transformations are described in [6] and [41].

3.3 Explicit Transformations

The vicinity of each critical point 𝑥0 (the centre of a layer) can be divided into intervals such
that the function 𝜓(𝑥, 𝜀) in equation (27) is majorised on each of the intervals by a corresponding
elementary function with which the equation is explicitly integrated, producing the local transfor-
mation 𝑥(𝜉, 𝑥0, 𝜀). By matching these local transformations with themselves and with polynomial
functions, a global explicit transformation 𝑥(𝜉, 𝜀) : [0, 1] → [𝑙0, 𝑙1] can be obtained, eliminating
singularities of the solution on the whole interval [𝑙0, 𝑙1]. However, if the physical problem has too
many critical points, this process of generating global transformations that eliminate the singularities
of a solution may seem too laborious and inefficient. In this case, a simpler and more reliable way to
perform practical calculations is to compute the transformations by solving the numerical problem
(27) with a suitable weighting function 𝜓(𝑥, 𝜀), typically defined on the whole interval [𝑙0, 𝑙1] by
estimates of the solution derivatives as

𝜓(𝑥, 𝜀) = |𝑢 ( 𝑗 ) (𝑥, 𝜀) |1/ 𝑗 + 1,

see for example [6], [15], and [55].

3.3.1 Transformations eliminating exponential layers

In order to eliminate locally (in the vicinity of a boundary layer) exponential singularity (2) with
𝑥0 = 0, i.e.,

| 𝑢 (𝑖) (𝑥, 𝜀) |⩽ 𝑀 [𝜀−𝑖𝑘 exp(−𝑏𝑥/𝜀𝑘) + 1] , 𝑏 > 0 , 1 ⩽ 𝑖 ⩽ 𝑛 , 0 ≤ 𝑥 ≤ 𝑚 , (32)

of a function 𝑢(𝑥, 𝜀) up to order 𝑛 in a new coordinate 𝜉, a popular basic logarithmic contraction
function 𝑥1(𝜉, 𝜀, 𝑎, 𝑘) can be used:

𝑥1(𝜉, 𝜀, 𝑎, 𝑘) = −𝜀𝑘

𝑎
ln(1 − 𝑑𝜉) , 𝑑 =

1 − 𝜀𝑘/𝑛

𝜉𝑛1
, 0 ≤ 𝜉 ≤ 𝜉𝑛1 , (33)

with the restriction 𝑏/𝑛2 ≥ 𝑎 > 0, and then it should be prolongated smoothly on the interval
[0, 𝑚1] (see [4], p. 55 and [6], pp. 181-183). This type of local transformation was introduced by
Bakhvalov [1].
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Another popular piecewise uniform transformation

𝑥(𝜉, 𝜀, 𝑏) =


2𝜎𝜉 , 0 ≤ 𝜉 ≤ 1/2 ,

𝜎 + 2(1 − 𝜎)𝜉 , 1/2 ≤ 𝜉 ≤ 1 ,
(34)

where 𝜎 = min{0.5, (𝑛/𝑏)𝜀 ln 𝑁}, proposed by Shishkin [2] for generating grids in exponential
layers, is also dependent on constant 𝑏 in (32), so these grids with a fixed constant will not be
suitable for all 𝑏 ∈ (0,∞) in (2). Compared with the grid of Bakhvalov, the grid of Shishkin,
though contrived later, provides numerical solutions with 𝜀−uniform errors of lower accuracy.

3.3.2 Transformations Eliminating both Exponential and Power-of-Type-1 Layers

A coordinate transformation, designated as 𝑥𝑝1(𝜉, 𝜀, 𝑝, 𝑘) of the class 𝐶𝑙 [0, 1], 𝑙 ≤ 𝑛, described
in [6], pp. 183-185 and in [4], pp. 53-55, for eliminating power-of-type-1 singularities 𝜀𝑘𝛼/(𝜀𝑘 +
𝑥)𝛼+𝑖 , 0 ≤ 𝑥 ≤ 1 of scale 𝑘 up to order 𝑛, has the following form:

𝑥𝑝1(𝜉, 𝜀, 𝑝, 𝑘) =



𝑐𝜀𝑘 ((1 − 𝑑𝜉)−1/𝑝 − 1) , 0 ≤ 𝜉 ≤ 𝜉𝑛0 ,

𝑐
[
𝜀𝑘 (1−𝑣/𝑝) − 𝜀𝑘 +

( 𝜀𝑘

(1 − 𝑑𝜉)1/𝑝

) ′
(𝜉𝑛0 ) (𝜉 − 𝜉𝑛0 )+

+1
2

( 𝜀𝑘

(1 − 𝑑𝜉)1/𝑝

) ′′
(𝜉𝑛0 )(𝜉 − 𝜉𝑛0 )2 + . . . +

+ 1
𝑙!

( 𝜀𝑘

(1 − 𝑑𝜉)1/𝑝

) (𝑙)
(𝜉𝑛0 ) (𝜉 − 𝜉𝑛0 )𝑙 + 𝑐0(𝜉 − 𝜉𝑛0 )𝑙+1

]
, 𝜉𝑛0 ≤ 𝜉 ≤ 1 ,

(35)

where 𝑑 = (1−𝜀𝑘𝑣)/𝜉𝑛0 ; 𝑣 = 𝑝/(1+𝑛𝑝); 𝑝 is an arbitrary positive constant satisfying 0 < 𝑝 ≤ 𝛼/𝑛2;
1 > 𝜉𝑛0 (for example 𝜉𝑛0 = 1/2); 𝑐0 is an arbitrary positive constant; 𝑐 > 0 is such that the necessary
boundary condition 𝑥𝑝1(1, 𝜀, 𝑝, 𝑘) = 1 is satisfied (𝑐 < 1/(𝑐0(1−𝜉𝑛0 )𝑙+1)), (𝑐 < 1/(𝑐0(1−𝜉𝑛0 )𝑙+1));
𝑙 ≤ 𝑛; (

𝜀𝑘

(1 − 𝑑𝜉)1/𝑝

) (𝑖)
(𝜉𝑛0 ) = 𝑑 𝑖 1

𝑝

(
1
𝑝
+ 1

)
· · ·

(
1
𝑝
+ 𝑖 − 1

)
𝜀𝑘𝑝 (𝑛−𝑖)/(1+𝑛𝑝) , 𝑖 ≥ 1.

In particular, for 𝑙 = 0 the transformation is as follows:

𝑥𝑝1(𝜉, 𝜀, 𝑝, 𝑘) =

𝑐𝜀𝑘 ((1 − 𝑑𝜉)−1/𝑝 − 1) , 0 ≤ 𝜉 ≤ 𝜉𝑛0 ,

𝑐
[
𝜀𝑘𝑝𝑛/(1+𝑛𝑝) − 𝜀𝑘 + 𝑐0(𝜉 − 𝜉𝑛0 )

]
, 𝜉𝑛0 ≤ 𝜉 ≤ 1 .

For example, transformations (35) with 𝑘 = 1 eliminate the singularity 𝜀𝛼/(𝜀 + 𝑥)𝛼+𝑖, 1 ≤ 𝑖 ≤ 𝑛.
By estimation (14), this transformation, with an arbitrary 𝑝 > 0 and 0 < 𝑣 ≤ 𝑝/(1+ 𝑛𝑝), eliminates
the exponential singularity (1/𝜀𝑖𝑘) exp(−𝑚𝑥/𝜀𝑘) up to an arbitrary order 𝑛 (see [4], pp. 54-55).
Thus, transformation (35) is more convenient for eliminating exponential singularities (32) than
transformations (33) or (34) dependent on 𝑏, since the constant 𝑝 in (35) can be arbitrary regardless
of the constant 𝑏 in (32), which in practical problems modelled for example by Navier-Stokes
equations typically is unknown; therefore, with an arbitrary fixed constant 𝑝 > 0, this transformation
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alone is valid for all constants 𝑏 ∈ (0,∞) in (32) for eliminating exponential singularities of 𝑢(𝑥, 𝜀)
up to order 𝑛. A simpler form of transformation (35) with 𝑝 = 1 was originally published in [46],
while with an arbitrary 𝑝 > 0 in [56], [57], and [43]. The grid obtained through transformation (35)
is the most effective for numerical modelling of viscous flows over a plate [5] and in a cavern [4],
compared with results obtained on other known grids.

3.3.3 Transformations eliminating power-of-type-2 layers

A coordinate transformation, designated as 𝑥𝑝2(𝜉, 𝜀, 𝑡, 𝑘), for eliminating power-of-second-type
singularities (𝜀𝑘 + 𝑥)𝑏−𝑖 , 0 ≤ 𝑥 ≤ 1 , up to order 𝑛, described in [6], has the following form:

𝑥𝑝2(𝜉, 𝜀, 𝑡, 𝑘) =
(𝜀𝑘𝑡 + 𝜉)1/𝑡 − 𝜀𝑘

(𝜀𝑘𝑡 + 1)1/𝑡 − 𝜀𝑘
, 0 ≤ 𝜉 ≤ 1 , (36)

where 0 < 𝑡 ≤ min{𝑏/𝑛, 1/𝑛}. Notice that when 𝑏 ≥ 𝑛, the function (𝜀 + 𝑥)𝑏−𝑛 is 𝜀-uniformly
bounded, so that one can consider this singularity only for 0 < 𝑏 < 𝑛. This transformation was
originally published in [56] and [43]. Theoretical results regarding uniform convergence, and
numerical experiments with a grid generated through this transformation for solving a problem
(6) having a single attracting interior turning point 𝑥0 approximated by an upwind scheme, were
demonstrated in [3], [6] (Sect. 8.1.6, example 12), [4], and also also in [58], where high–order
uniform convergence in an integral norm was proved for a FEM.

3.3.4 Transformations eliminating logarithmic layers

Solution derivatives near the boundary point 𝑥0 = 0 can also be estimated by the majorant

|𝑢 (𝑖) (𝑥, 𝜀) | ≤ 𝑀 [1 + 1/((𝜀𝑘 + 𝑥)𝑖 | ln 𝜀 |) , 1 ≤ 𝑖 ≤ 𝑛 , 0 ≤ 𝑥 ≤ 𝑚 , (37)

see (20). Unfortunately, the transformation which would eliminate this singularity up to order 𝑛 > 1
has not yet been found. The following transformation eliminates this singularity only up to order
1::

𝑥𝑙 (𝜉, 𝜀, 𝑘) =


𝑐𝜀𝑘

[(
1 + 1

𝜀𝑘 ln(𝜀−1)

) 𝜉/𝜉0
− 1

]
, 0 ≤ 𝜉 ≤ 𝜉0 ,

𝑐
[
ln−1(𝜀−1) + 1

𝜉0
(𝜀𝑘 + ln−1(𝜀−1)) ln

(
1 + 1

𝜀𝑘 ln(𝜀−1)

)
(𝜉 − 𝜉0)+

𝑐0(𝜉 − 𝜉0)2
]
, 𝜉0 ≤ 𝜉 ≤ 𝑚1 .

(38)

Thus, the problem of finding a coordinate transformation eliminating singularity (20) up to order
𝑛 > 1 yet remains.

Coordinate transformation (38) has some relation to a function introduced by Eriksson [59]:

𝑥𝐸𝑟 (𝜉) = (𝑒𝑑𝜉 − 1)/(𝑒𝑑 − 1), 𝑑 > 0 , 0 ≤ 𝜉 ≤ 1 ,

popular in CFD for providing layer resolution near the boundary 𝑥 = 0. Namely, if 𝑑 in the Eriksson
function is equal to ln(1+1/𝜀−𝑘 ln(𝜀−1)) then it coincides with the contraction transformation (38)
when 𝜉0 = 𝑚1 = 1. This relation shows clearly how to adjust the grid spacing automatically to the
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physical small parameter 𝜀 by means of the Eriksson function. Other functions, based on the inverse
hyperbolic sines and tangents, were introduced by Vinokur [60] to treat exponential singularities.

3.3.5 Transformations eliminating hybrid layers

To eliminate a hybrid singularity, which is a combination of power-of-first- and power-of-second-
type singularities of scale 𝑘:

𝜀𝑘𝛼/(𝜀𝑘 + 𝑥)𝛼+𝑖 + (𝜀𝑘 + 𝑥)𝑏−𝑖 , 0 ≤ 𝑥 ≤ 1; (39)

up to order 𝑛 we use a composition of two coordinate transformations (36) and (35), one of which
eliminates power-of-type-2 layers and the other eliminates power-of-type-1 layers. It was proved in
[4], that hybrid singularities (39) for 0 ≤ 𝑥 ≤ 1 is eliminated up to 𝑛 by the coordinate transformation
designated as 𝑥ℎ (𝜉, 𝜀, 𝛼, 𝑏, 𝑝, 𝑘):

𝑥ℎ (𝜉, 𝜀, 𝛼, 𝑏, 𝑝, 𝑘) =
(𝜀𝑘𝑡 + 𝑥𝑝1(𝜉, 𝜀, 𝑝, 𝑘𝑡))1/𝑡 − 𝜀𝑘

(𝜀𝑘𝑡 + 1)1/𝑡 − 𝜀𝑘
,

0 < 𝑡 ≤ min{𝑏/𝑛, 1/𝑛} , 0 < 𝑝 ≤ 𝛼/(𝑡𝑛2) , 0 ≤ 𝜉 ≤ 1 .

(40)

Transformation (40) is suitable to eliminate not only hybrid singularity (39) but also eliminates
either power-of-second-type or power-of-type-1 singularities.

A layer-resolving grid to problem (1) with an interior turning point 𝑥0 = 0 is defined through a
piece-wise mapping 𝑥(𝜉, 𝜀, 𝛼, 𝑏, 𝑝, 1/2) : [−1, 1] → [−1, 1], using (40), in the following form:

𝑥(𝜉, 𝜀, 𝛼, 𝑏, 𝑝, 1/2) =
{−𝑥ℎ (−𝜉, 𝜀, 𝛼, 𝑏, 𝑝, 1/2), 𝜉 ∈ [−1, 0],

𝑥ℎ (𝜉, 𝜀, 𝛼, 𝑏, 𝑝, 1/2), 𝜉 ∈ [0, 1] .
(41)

For a problem with an arbitrary interior turning point 𝑥0 in the interval [𝑙0, 𝑙1], one can use an
additional monotone function 𝜑𝑥0 (𝑥), which maps the interval [−1, 1] onto [𝑙0, 𝑙1] with the restric-
tions 𝜑𝑥0 (−1) = 𝑙0, 𝜑𝑥0 (0) = 𝑥0, 𝜑𝑥0 (1) = 𝑙1. The corresponding transformation for generating
layer-resolving grids is defined as a composition of 𝑥(𝜉, 𝜀, 𝛼, 𝑏, 𝑝, 1/2) and 𝜑𝑥0 (𝑥) (see [6], Sect.
8.1.6).

4. TURNING-POINT PROBLEMS

Turning-point problems are considered important in practical applications and frequently involve
layers that are non-exponential. Some examples of turning-point problems and analytical and nu-
merical aspects for their study are discussed in the reviews: [14], [18] and the books: [3], [6],
[34],[41]. The analytical and numerical treatments of turning-point problems are more difficult than
of non-turning-point problems. In particular, it is not always possible to decompose the solution
into regular and singular components to find estimates of the solution derivatives, since the reduced
(𝜀 = 0) problem may be ill-posed, with the coefficient before the higher derivative of the reduced
problem being zero at some point. Thus, the values of the regular component and/or its derivatives
may be unbounded, even though the reduced problem is independent of 𝜀. Some special techniques
for obtaining estimates of the derivatives of solutions to turning-point problems are shown in [42],
[3], [29], [6],[27], and in Sect. 4.1 of this paper.

158



https://wjphysics.com// | February 2024 Vladimir D. Liseikin

4.0.1 Stationary Problems

Popular stationary turning-point problems have the form of (1), namely:

−(𝜀 + 𝑑 (𝑥))𝜈𝑢′′ + 𝑎(𝑥)𝑢′ + 𝑓 (𝑥, 𝑢) = 0, 𝑙0 < 𝑥 < 𝑙1, 𝑢(𝑙0) = 𝐴0, 𝑢(𝑙1) = 𝐴1, (42)

where 𝑑 (𝑥) ≥ 0, 𝜈 ≥ 1, 𝑓𝑢 (𝑥, 𝑢) > 0, 𝑎(𝑥0) = 0 at some point 𝑥0, 𝑙0 ≤ 𝑥0 ≤ 𝑙1 (see [3], Sect. 3.4.2
and [30]). A solution 𝑢(𝑥, 𝜀) to a particular simple case of problem (42)

−𝜀𝑢′′ + 𝑎𝑥𝑢′ + 𝑢 = 0, 0 < 𝑥 < 1, 𝑢(0) = 𝐴0, , 𝑢(1) = 𝐴1, (43)

has a single power-of-type-1 boundary layer of scale 𝑘 = 1/2 near 𝑥 = 0 when 𝑎 > 0, while having
two boundary layers when 𝑎 < 0: a hybrid layer of scale 𝑘 = 1/2 near 𝑥 = 0 and an exponential
layer of scale 𝑘 = 1 near 𝑥 = 1 (see [3], Sect. 3). A solution 𝑢(𝑥) to the reduced problem (𝜀 = 0)

𝑎𝑥𝑢′ + 𝑢 = 0, 0 < 𝑥 < 1, 𝑢(1) = 𝐴1,

which is independent of the small parameter 𝜀, is 𝑢(𝑥) = 𝐴1𝑥
−1/𝑎 in the vicinity of the point 𝑥 = 0

for 𝑎 > 0, i.e., 𝑢𝑖 (𝑥) → ∞, 𝑖 ≥ 0, when 𝑎 > 0, 𝑥 → 0; while in the vicinity of the point 𝑥 = 0 for
𝑎 < 0, we may consider the reduced problem for 0 < 𝑥 < 1/2, 𝑢(1/2) = 𝑢(1/2, 𝜀), whose solution
is 𝑢(𝑥) = 𝑢(1/2, 𝜀)𝑥−1/𝑎, where 𝑢(𝑥, 𝜀) is a solution to (43). Thus, in this case, 𝑢𝑖 (𝑥) → ∞, for
𝑖 > 0, when −𝑎 > 1, 𝑥 → 0, although the reduced equation is independent of the small parameter
𝜀. Therefore, it is not possible to decompose the solution of problem (42) into regular and singular
components for finding estimates of solution derivatives.

The same remarks are obvious in the case of a turning point and variable- diffusion coefficient in
(42), e.g., 𝜀 + 𝑥𝑖 , 𝑖 ≥ 1, since then the reduced problem is also a two-point boundary-value problem
for whose solution 𝑢(𝑥) we get max𝑥 𝑢

(𝑖) (𝑥) = max𝑥 (lim𝜀→+0 𝑢
(𝑖) (𝑥, 𝜀)) = ∞, where 𝑢(𝑥, 𝜀) is a

solution of the original problem having a layer.

Certain approaches are presented in [42], [46], [47], [34], [30], [29], [3], [44], and [27], which
avoid decomposition into regular and singular components for analytical analyses of qualitative
properties of solutions, in particular for obtaining estimates of solution derivatives for stationary
problems (42) with boundary and interior turning points. In particular, approaches in [3], and [27]
include a technique for obtaining more accurate estimates of 𝑓 (𝑥, 𝑢) in (42) than | 𝑓 (𝑥, 𝑢) | ≤ 𝑀 , as
an indispensable tool for obtaining estimates of solution derivatives in the case of a simple turning
point 𝑥0 (𝑎′(𝑥0) ≠ 0). It has been proven using this technique that solutions to stationary singularly
perturbed problems (42) with 𝑑 (𝑥) = 0 near a boundary multiple turning point 𝑥0 (𝑎′(𝑥0) = 0)
have exponential-type layers (see [51], [3], [29] ), while solutions with a simple boundary turning
point have either power-of-1 or hybrid layers, depending on whether the turning point is attractive
or repulsive (see[3]). It was also shown in [27] and [41] using this technique that solutions to the
problem (42) with a turning point 𝑥0 = 0, (𝑎′(0) ≠ −1) and 𝑑 (𝑥) = 𝑥2, 𝜈 = 1 have hybrid layers.
The case 𝑎′(0) = −1 remains to be investigated, but perhaps the layer is logarithmic, similar to
solutions of (42) with 𝑑 (𝑥) = 𝑥, 𝜈 = 1, 𝑙0 = 0, 𝑎(0) = −1 having a boundary logarithmic layer of
scale 𝑘 = 1 near 𝑥 = 0 (see [3], section 3.4).
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4.0.2 Evolutionary Problems

The same remarks apply for non-stationary problems with turning points:

−(𝜀 + 𝑑 (𝑥)) 𝜕
2𝑢(𝑥, 𝑡)
𝜕𝑥2 + 𝑎(𝑥, 𝑡) 𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
+ 𝑏(𝑥, 𝑡)𝑢(𝑥, 𝑡) + 𝑑 (𝑥, 𝑡) 𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
+ 𝑓 (𝑥, 𝑡) = 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), −𝑙0 ≤ 𝑥 ≤ 𝑙1, 𝑢(𝑙0, 𝑡) = 𝛼1(𝑡), 𝑢(𝑙1, 𝑡) = 𝛼2(𝑡), 𝑡 ∈ [0, 𝑇],
(44)

where (𝑥, 𝑡) ∈ (𝑙0, 𝑙1) × [0, 𝑇] . The functions 𝑎(𝑥, 𝑡), 𝑏(𝑥, 𝑡), 𝑑 (𝑥, 𝑡), 𝑓 (𝑥, 𝑡) and initial condition
𝑢0(𝑥) are sufficiently smooth and 𝑑 (𝑥, 𝑡) ≥ 𝛿 > 0 in (𝑙0, 𝑙1) × (0, 𝑇]. Furthermore, (i) 𝑎(𝑥0, 𝑡) = 0,
𝑡 ∈ [0, 𝑇], (ii) 𝑏(𝑥, 𝑡) ≥ 𝑏 > 0, (𝑥, 𝑡) ∈ (𝑙0, 𝑙1) × (0, 𝑇].

It is noteworthy that if all coefficients within equation (44) as well as the boundary conditions
are stationary, i.e., independent of the variable 𝑡, then its solution tends to the solution of the
corresponding stationary problem as time increases. Consequently, it seems likely that the layers
of solutions to parabolic problems with turning points and sufficiently smooth and compatible
initial and boundary data are comparable to the layers of solutions to the corresponding steady-state
problems. For example, when 𝑑 (𝑥) = 0 and there is a multiple boundary turning point, the layers
are exponential; whereas when there is a simple boundary turning point, they are either of power-
of-type-1 or hybrid layers. However, some authors of papers inaccurately draw the conclusion
that there are only exponential layers in evolutionary problems with turning points and 𝑑 (𝑥) = 0,
regardless of whether the boundary turning point is attractive, repelling, or multiple, and even if it
is an interior turning point; see for example [50] for a boundary turning point and [28], [48], and
[49] for an interior turning point. The conclusions are based on the erroneous assumption that the
derivatives of the solutions to the reduced non-stationary problems are uniformly bounded, since
they are independent of the small parameter. The authors seem to have overlooked the fact that
reduced problems for equations with turning points are largely ill-posed, which distinguishes them
from equations without turning points. This means that the derivatives of their solutions may not
be bounded as the authors claim. Although the relationship between the parabolic problem and
the steady state problem in the case of turning points remains unclear when the parabolic problem
is solved over a finite time interval of T, indirect evidence can be obtained through numerical
experiments. These experiments can compare the characteristics of uniformity for solutions at the
x-interval for specific values of T, such as T=10, 100, 200, etc., using appropriate grids. Of course,
further research is needed to fully understand this relationship.

4.1 Theoretical and Numerical Analysis of a Problem with Hybrid Layers

Numerous numerical experiments for solving non-exponential layer problems are presented in books:
[41] and [6] and in papers: [27], [5], [63], [30], [44], [34], [47]. This section describes the theoretical
and numerical analysis of a problem with a turning point and a variable diffusion coefficient:

𝐿 [𝑢] ≡ −(𝜀 + 𝑥)2𝑢′′ + 𝑎(𝑥)𝑢′ + 𝑐(𝑥)𝑢 = 𝑓 (𝑥) , 0 ≤ 𝑥 ≤ 1 ,

Γ[𝑢] ≡ [𝑢(0, 𝜀), 𝑢(1, 𝜀)] = (𝐴0, 𝐴1) , (45)

where 1 ≥ 𝜀 > 0, 𝑎(𝑥), 𝑐(𝑥), 𝑓 (𝑥) ∈ 𝐶𝑛 [0, 1], 𝑎(0) = 0, 𝑐(𝑥) > 0, 0 ≤ 𝑥 ≤ 1.
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4.1.1 Estimates of derivatives

We show here that solutions to the problem (45) exhibit a hybrid boundary layer, which is a combi-
nation of power-of-first-type and power-of-second-type layers, depending on 𝑐(0) and 𝑎 = 𝑎′(0).

It is well known that the pair (𝐿, Γ) in (45) is inverse monotone, i.e., if for two functions 𝑢(𝑥, 𝜀)
and 𝑣(𝑥, 𝜀), 0 ≤ 𝑥 ≤ 1,

(𝐿, Γ) [𝑢] ≤ (𝐿, Γ) [𝑣], 0 ≤ 𝑥 ≤ 1, then 𝑢(𝑥, 𝜀) ≤ 𝑣(𝑥, 𝜀), 0 ≤ 𝑥 ≤ 1.

This gives 𝜀 uniform bounds on solutions 𝑢(𝑥, 𝜀) to (45):

|𝑢(𝑥, 𝜀) | ≤ 𝑀 , 0 ≤ 𝑥 ≤ 1 . (46)

Similar to the proof of estimate (11) in [27], the following estimate is proved:

|𝑢 (𝑖) (𝑥, 𝜀) | ≤ 𝑀

(𝜀 + 𝑥)𝑖 , 𝑛 + 1 ≥ 𝑖 ≥ 0, 0 ≤ 𝑥 ≤ 1 . (47)

As quantity
1∫

0
(1/(𝜀 + 𝑥))d𝑥 = ln(𝜀 + 1) − ln 𝜀 is not uniformly bounded, estimate (47) is not

very good, since in accordance with formula (2.26) from [3] for the first derivative of a solution

to (45), the following inequality is held:
1∫

0
|𝑢′(𝑥, 𝜀) |d𝑥 ≤ 𝑀, i.e., the variation of the solution

𝑢(𝑥, 𝜀) on the interval [0, 1] is uniformly bounded. Therefore, for the purpose of defining layer-
damping transformations 𝑥(𝜉, 𝜀) satisfying (26) for 𝑖 = 1, we have to improve estimate (47), such

that |𝑢′(𝑥, 𝜀) | ≤ 𝜙(𝑥, 𝜀) and
1∫

0
𝜙(𝑥, 𝜀)d𝑥 ≤ 𝑀 .

To obtain a proper estimate of 𝑢 (𝑖) (𝑥, 𝜀), more accurate than (47), we will first find necessary bounds
on the function 𝑐(𝑥)𝑢(𝑥, 𝜀) − 𝑓 (𝑥). It is obvious that |𝑐(𝑥)𝑢(𝑥, 𝜀) − 𝑓 (𝑥) | ≤ 𝑀 . To improve this
estimate, if 𝑢(𝑥, 𝜀) is a solution to (45), we use the preliminary estimate (47) for 𝑖 = 1, and the
operator 𝐿 from (45). If 𝑢(𝑥, 𝜀) is a solution to (45), then

𝐿 [𝑐𝑢− 𝑓 ] (𝑥, 𝜀) = −(𝜀+𝑥)2 [2𝑐′(𝑥)𝑢′(𝑥, 𝜀) +𝑐′′𝑢(𝑥, 𝜀) − 𝑓 ′′(𝑥)] +𝑎(𝑥) [𝑐′(𝑥)𝑢(𝑥, 𝜀) − 𝑓 ′(𝑥)] (48)

and taking into account (46) and (47) for 𝑖 = 1, and the condition 𝑎(0) = 0, we find from (48)

|𝐿 [𝑐𝑢 − 𝑓 ] (𝑥, 𝜀) | ≤ 𝑀 (𝜀 + 𝑥) , 0 ≤ 𝑥 ≤ 1 , (49)

for some𝑀 > 0. Now, for estimating 𝑐(𝑥)𝑢(𝑥, 𝜀)− 𝑓 (𝑥) we introduce the following barrier function

𝑏(𝑥, 𝜀) = 𝑀1(𝜀/(𝜀 + 𝑥))𝛼 + 𝑀2(𝜀 + 𝑥)𝛽 , 𝛼 > 0 , 𝛽 > 0 . (50)

We have
𝐿 [𝑏] (𝑥, 𝜀) = 𝑀1𝜀

𝛼 (𝜀 + 𝑥)−𝛼𝑏1(𝑥, 𝜀) + 𝑀2(𝜀 + 𝑥)𝛽𝑏2(𝑥, 𝜀) , (51)

where
𝑏1(𝑥, 𝜀) = −𝛼(𝛼 + 1) + 𝑐(𝑥) − 𝛼𝑎(𝑥)/(𝜀 + 𝑥) ,
𝑏2(𝑥, 𝜀) = 𝛽(1 − 𝛽) + 𝑐(𝑥) + 𝛽𝑎(𝑥)/(𝜀 + 𝑥) .
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Case 𝑎 + 𝑐(0) > 0 Here and further we designate 𝑎′(0) by 𝑎. If 𝑎 + 𝑐(0) > 0, we can assume in
(50) 𝛽 = 1, as then

𝑏2(𝑥, 𝜀) = 𝑐(𝑥) + 𝑎 − 𝜀𝑎/(𝜀 + 𝑥) + (𝑎(𝑥) − 𝑥𝑎)/(𝜀 + 𝑥) ≥ 𝑚0 , 0 ≤ 𝑥 ≤ 𝑚1 ,

for some𝑚0 > 0 and𝑚1 > 0, while, for a small 𝛼 > 0, namely, when 𝑐(0)−𝛼(𝑎+|𝑎 |)/2−𝛼(𝛼+1) >
0,

𝑏1(𝑥, 𝜀) ≥ 𝑚2 , 0 ≤ 𝑥 ≤ 𝑚3 ,

for some 𝑚2 > 0 and 𝑚3 > 0. Therefore, relying on (50) with sufficiently large 𝑀1 and 𝑀2, we
come, using (49) and (51), to

𝐿 [𝑏] (𝑥, 𝜀) ≥ 𝐿 [𝑐𝑢 − 𝑓 ] (𝑥, 𝜀) ≥ 𝐿 [−𝑏] (𝑥, 𝜀) , 0 ≤ 𝑥 ≤ 𝑚4 ,

for some 𝑚4 > 0. Suggesting also that 𝑀1 ≥ |𝑐(0)𝑢(0, 𝜀) − 𝑓 (0) |, 𝑀2 ≥ |𝑐(𝑚4)𝑢(𝑚4, 𝜀) −
𝑓 (𝑚4) |/(𝑚4)𝛽 , from the principle of inverse monotonicity of the pair [𝐿, Γ] in 𝐶2 [0, 𝑚4], we get,
taking into account (51), that

|𝑐(𝑥)𝑢(𝑥, 𝜀) − 𝑓 (𝑥) | ≤ 𝑀 [𝜀𝛼/(𝜀 + 𝑥)𝛼 + 𝜀 + 𝑥] , 0 ≤ 𝑥 ≤ 𝑚4 ,

and using (46), it follows

|𝑐(𝑥)𝑢(𝑥, 𝜀) − 𝑓 (𝑥) | ≤ 𝑀 [𝜀𝛼/(𝜀 + 𝑥)𝛼 + 𝜀 + 𝑥] , 0 ≤ 𝑥 ≤ 1 , (52)

for some 𝑀 > 0, if 𝑎′(0) + 𝑐(0) > 0 and 𝛼 > 0 is such, that 𝑐(0) − 𝛼(𝑎 + |𝑎 |)/2 − 𝛼(𝛼 + 1) > 0 .

Case 𝑎+𝑐(0) ≤ 0 Now let 𝑎+𝑐(0) ≤ 0, i.e., −𝑎 ≥ 𝑐(0), then, for an arbitrary positive 𝛽, satisfying
𝛽(1 − 𝛽) + 𝑐(0) + 𝛽𝑎′(0) > 0, for example, 0 < 𝛽 < min(1, 𝑐(0)/|𝑎 |), we get

𝑏2(𝑥, 𝜀) = 𝛽(1 − 𝛽) + 𝑐(𝑥) + 𝛽𝑎(𝑥)/(𝜀 + 𝑥) ≥ 𝑚0 , 0 ≤ 𝑥 ≤ 𝑚1 ,

for some 𝑚0 > 0. Further, similarly as proving (52), we conclude that

|𝑐(𝑥)𝑢(𝑥, 𝜀) − 𝑓 (𝑥) | ≤ 𝑀 [𝜀𝛼/(𝜀 + 𝑥)𝛼 + (𝜀 + 𝑥)𝛽] , 0 ≤ 𝑥 ≤ 1 , (53)

for 𝛽 > 0 and 𝛽(1−𝛽)+𝑐(0)+𝛽𝑎 > 0, if 𝑎+𝑐(0) ≤ 0 and 𝛼 > 0 is such, that 𝑐(0)−𝛼𝑎−𝛼(𝛼+1) > 0 .

By resolving (45) with respect to 𝑢′(𝑥, 𝜀) we obtain

𝑢′(𝑥, 𝜀) = 𝑢′(𝑥0, 𝜀) exp[𝜓(𝑥0, 𝑥, 𝜀)] +
𝑥∫

𝑥0

𝑐(𝜉)𝑢(𝜉, 𝜀) − 𝑓 (𝜉)
(𝜀 + 𝜉)2 exp[𝜓(𝜉, 𝑥, 𝜀)]d𝜉 , 0 ≤ 𝑥 ≤ 1 ,

(54)

where 𝜓(𝜉, 𝑥, 𝜀) =
𝑥∫
𝜉

𝑎(𝜂)/(𝜀 + 𝜂)2d𝜂 .

Case 𝑎 = 0 In this case |𝜓(𝜉, 𝑥, 𝜀) | ≤ 𝑀 0 ≤ 𝜉 , 𝑥 ≤ 1 , and 𝑐(𝑥)𝑢(𝑥, 𝜀) − 𝑓 (𝑥) is estimated by
(52). Therefore, using in (54) estimates (52) and (47) for 𝑖 = 1 and 𝑥0 ≥ 𝑚 > 0, we obtain

|𝑢′(𝑥, 𝜀) | ≤ 𝑀 [1 + 𝜀𝛼/(𝜀 + 𝑥)𝛼+1 + | ln(𝜀 + 𝑥) |] , 0 ≤ 𝑥 ≤ 1 , (55)
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for an arbitrary 𝛼 > 0, satisfying 𝑐(0) − 𝛼(𝛼 + 1) > 0. Relying on this estimate, we obtain as in
(48),

|𝐿 [𝑐𝑢 − 𝑓 ] (𝑥, 𝜀) | ≤ 𝑀 [𝜀𝛼/(𝜀 + 𝑥)𝛼 + (𝜀 + 𝑥)2 ln(𝜀 + 𝑥)] , 0 ≤ 𝑥 ≤ 1 ,

as 𝑎 = 0. Therefore, using the barrier function (50) with 𝛽, satisfying both 2 > 𝛽 > 0 and 𝛽(1 −
𝛽) + 𝑐(0) > 0, similar to obtaining (53), we conclude that

|𝑐(𝑥)𝑢(𝑥, 𝜀) − 𝑓 (𝑥) | ≤ 𝑀 [𝜀𝛼/(𝜀 + 𝑥)𝛼 + (𝜀 + 𝑥)𝛽] , 0 ≤ 𝑥 ≤ 1 , (56)

for 𝑎 = 0, where 𝛼 > 0 is such, that 𝑐(0) − 𝛼(𝛼 + 1) > 0 . Thus, in this case, we get from (54) the
following, more accurate than (55), estimate:

|𝑢′(𝑥, 𝜀) | ≤ 𝑀 [1 + 𝜀𝛼/(𝜀 + 𝑥)𝛼+1] , 0 ≤ 𝑥 ≤ 1 . (57)

Relying again on this estimate of 𝑢′(𝑥, 𝜀) in (48), we readily obtain that formula (56) is valid when
𝛽 satisfies both 2 ≥ 𝛽 > 0 and 𝛽(1 − 𝛽) + 𝑐(0) > 0. Using estimates (56) and (57), we conclude
from (45), that

|𝑢 (𝑖) (𝑥, 𝜀) | ≤ 𝑀 [1 + 𝜀𝛼/(𝜀 + 𝑥)𝛼+𝑖 + (𝜀 + 𝑥)𝛽−𝑖] , 𝑖 ≥ 1 , 0 ≤ 𝑥 ≤ 1 , (58)

if 𝑎 = 0 and 𝛼 > 0 is such, that 𝑐(0) − 𝛼(𝛼 + 1) > 0 and 𝛽 satisfies both 2 ≥ 𝛽 > 0 and
𝛽(1 − 𝛽) + 𝑐(0) > 0. In particular, 𝛽 = 2 if 𝑐(0) > 2 or 𝛽 = 1 for an arbitrary 𝑐(0) > 0 complies
with these requirements.

Case 𝑎 ≠ 0 In this case we have for 𝜓(𝜉, 𝑥, 𝜀) in (54)

𝜓(𝜉, 𝑥, 𝜀) =
𝑥∫

𝜉

(𝜀 + 𝜂)𝑎 + 𝑎(𝜂) − 𝑎𝜂 − 𝑎𝜀

(𝜀 + 𝜂)2 d𝜂 = 𝑎 ln
( 𝜀 + 𝑥

𝜀 + 𝜉

)
+ 𝑔1(𝜉, 𝑥, 𝜀),

where 𝑔1(𝜉, 𝑥, 𝜀) =
𝑥∫
𝜉

(𝑎(𝜂) − 𝑎𝜂 − 𝑎𝜀)/(𝜀 + 𝜂)2d𝜂 . As |𝑎(𝜂) − 𝑎𝜂 | ≤ 𝑀𝜂2, so

|𝑔1(𝜉, 𝑥, 𝜀) | ≤ 𝑀 , 0 ≤ 𝜉, 𝑥 ≤ 1 , (59)
and, therefore,

exp[𝜓(𝜉, 𝑥, 𝜀)] = exp[𝑔1(𝜉, 𝑥, 𝜀)]
( 𝜀 + 𝑥

𝜀 + 𝜉

)𝑎
≤ 𝑀

( 𝜀 + 𝑥

𝜀 + 𝜉

)𝑎
. (60)

Thus, from (54) we get

𝑢′(𝑥, 𝜀) = 𝑢′(𝑥0, 𝜀)
( 𝜀 + 𝑥

𝜀 + 𝑥0

)𝑎
exp[𝑔1(𝑥0, 𝑥, 𝜀)] + 𝑔2(𝑥0, 𝑥, 𝜀) , (61)

where

𝑔2(𝑥0, 𝑥, 𝜀) = (𝜀 + 𝑥)𝑎
𝑥∫

𝑥0

𝑐(𝜉)𝑢(𝜉, 𝜀) − 𝑓 (𝜉)
(𝜀 + 𝜉)2+𝑎 exp[𝑔1(𝜉, 𝑥, 𝜀)]d𝜉 .

Now, using estimates (52) and (53), in which 𝛼 > 0 and 𝛽 > 0, and (59), we get

𝑔2(𝑥0, 𝑥, 𝜀) ≤ 𝑀 (𝜀 + 𝑥)𝑎
��� 𝑥∫
𝑥0

𝜀𝛼

(𝜀 + 𝜉)𝛼+2+𝑎 d𝜉 +
𝑥∫

𝑥0

d𝜉
(𝜀 + 𝜉)2+𝑎−𝛽

��� ≤
≤ 𝑀1(𝜀 + 𝑥)𝑎

[ 𝜀𝛼

(𝜀 + 𝑥)𝛼+1+𝑎 + 𝜀𝛼

(𝜀 + 𝑥0)𝛼+1+𝑎 + 1
(𝜀 + 𝑥)1+𝑎−𝛽 + 1

(𝜀 + 𝑥0)1+𝑎−𝛽

]
.

(62)
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Case 𝑎 > 0. In this case, according to (52) 𝛽 = 1 in (62), so we have from (61) and (62) with
𝑥0 ≥ 𝑚 > 0

|𝑢′(𝑥, 𝜀) | ≤ 𝑀 [1 + 𝜀𝛼/(𝜀 + 𝑥)𝛼+1] , 0 ≤ 𝑥 ≤ 1 , (63)

for an arbitrary 𝛼 > 0, satisfying 𝑐(0) − 𝛼𝑎′(0) − 𝛼(𝛼 + 1) > 0.While for an arbitrary 𝑖 ≥ 1 we get
from (45) and (63)

|𝑢 (𝑖) (𝑥, 𝜀) | ≤ 𝑀 [1 + 𝜀𝛼/(𝜀 + 𝑥)𝛼+𝑖 + (𝜀 + 𝑥)1−𝑖] , 𝑖 ≥ 1 , 0 ≤ 𝑥 ≤ 1 . (64)

Case 𝑎 < 0. Let first −𝑎 > 1, then, assuming 𝑥0 = 0, we obtain from (61) and (62), taking into
account that in accordance with (47) 𝑢′(0) ≤ 𝑀𝜀−1,

|𝑢′(𝑥, 𝜀) | ≤ 𝑀
[ 𝜀−𝑎−1

(𝜀 + 𝑥)−𝑎 + 𝜀𝛼

(𝜀 + 𝑥)𝛼+1 + (𝜀 + 𝑥)𝛽−1
]
, −𝑎 > 1 , 0 ≤ 𝑥 ≤ 1 , (65)

where 𝛼 > 0 is such that 𝑐(0) − 𝛼(𝛼 + 1) > 0, and 𝛽 satisfies both 0 < 𝛽 ≤ 1 and 0 < 𝛽 < 𝑐(0)/|𝑎 |.
As 𝛼 = −𝑎 − 1 satisfies the requirement 𝑐(0) − 𝛼(𝛼 + 1) = 𝑐(0) > 0, so (65) yields

|𝑢′(𝑥, 𝜀) | ≤ 𝑀
[ 𝜀−𝑎−1

(𝜀 + 𝑥)−𝑎−1−𝑖 + (𝜀 + 𝑥)𝛽−1
]
, −𝑎 > 1 , 0 ≤ 𝑥 ≤ 1 ,

and from (45) we readily get

|𝑢 (𝑖) (𝑥, 𝜀) | ≤ 𝑀
[ 𝜀−𝑎−1

(𝜀 + 𝑥)−𝑎−1−𝑖 + (𝜀 + 𝑥)𝛽−𝑖
]
, −𝑎 > 1 , 𝑖 ≥ 1 , 0 ≤ 𝑥 ≤ 1 , (66)

for 𝛽 satisfying both 0 < 𝛽 ≤ 1 and 0 < 𝛽 < 𝑐(0)/|𝑎′(0) |. In particular, if 𝑎 + 𝑐(0) > 0 we can in
(65) and (66) assume 𝛽 = 1.

Let now 0 < −𝑎 < 1. Using (47), (61), and (62) with 𝑥0 = 𝑚 > 0, we obtain

|𝑢′(𝑥, 𝜀) | ≤ 𝑀
[
(𝜀 + 𝑥)𝑎 + 𝜀𝛼

(𝜀 + 𝑥)𝛼+1 + 1
(𝜀 + 𝑥)1−𝛽

]
, 0 < 𝑥 ≤ 1 . (67)

As 0 < −𝑎 < 1, we can assume 𝛽 = 1 + 𝑎, because in this case 𝛽(1 − 𝛽) + 𝑐(0) + 𝛽𝑎 = 𝑐(0) > 0,
thus estimate (53) is valid for this 𝛽, and, consequently, (𝜀 + 𝑥)𝑎 = (𝜀 + 𝑥)𝛽−1, so (67) yields

|𝑢′(𝑥, 𝜀) | ≤ 𝑀
(
(𝜀 + 𝑥)𝑎 + 𝜀𝛼

(𝜀 + 𝑥)𝛼+1

)
, 0 < −𝑎 < 1 , 0 ≤ 𝑥 ≤ 1 , (68)

where 𝛼 is an arbitrary positive number, satisfying 𝑐(0) − 𝛼(𝛼 + 1) > 0 . From this estimate and
(45) we get

|𝑢 (𝑖) (𝑥, 𝜀) | ≤ 𝑀
[
(𝜀 + 𝑥)𝑎−𝑖+1 + 𝜀𝛼

(𝜀 + 𝑥)𝛼+𝑖
]
, 0 < −𝑎 < 1 , 𝑖 ≥ 1 , 0 ≤ 𝑥 ≤ 1 . (69)

Summarizing the previous results we formulate the following theorem:

Theorem 2 Let 𝑢(𝑥, 𝜀) be a solution to (45) with 𝑎 = 𝑎′(0) ≠ −1. Then,

|𝑢 (𝑖) (𝑥, 𝜀) | ≤ 𝑀 [1 + 𝜀𝛼/(𝜀 + 𝑥)𝛼+𝑖 + (𝜀 + 𝑥)𝛽−𝑖] , 0 ≤ 𝑖 ≤ 𝑛 , 0 ≤ 𝑥 ≤ 1 , (70)
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where
1. for 𝑎 = 0: 𝛼 is an arbitrary positive number, satisfying 𝑐(0) − 𝛼(𝛼 + 1) > 0, 𝛽 is an arbitrary
positive number, satisfying both 2 ≥ 𝛽 > 0 and 𝛽(1 − 𝛽) + 𝑐(0) > 0;
2. for 𝑎 > 0: 𝛼 is an arbitrary positive number, satisfying 𝑐(0) − 𝛼𝑎 − 𝛼(𝛼 + 1) > 0, 𝛽 = 1;
3. for 0 < −𝑎 < 1: 𝛼 is an arbitrary positive number, satisfying 𝑐(0) − 𝛼(𝛼 + 1) > 0, 𝛽 = 1 + 𝑎;
4. for −𝑎 > 1: 𝛼 = −𝑎 − 1, 𝛽 is an arbitrary positive number, satisfying both 0 < 𝛽 ≤ 1 and
0 < 𝛽 < 𝑐(0)/|𝑎 |.

Notice, the case 𝑎 = −1 has not yet been unraveled.

4.1.2 Numerical Algorithm

We use as an approximation of the singularly-perturbed boundary-value problem (45) the standard
up wind finite difference scheme on a nonuniform grid 𝑥𝑖 , 𝑖 = 0, 1, . . . , 𝑁 , 𝑥0 = 0 < 𝑥1 < . . . <
𝑥𝑁 = 1:

−2(𝜀 + 𝑥𝑖)2

ℎ𝑖 + ℎ𝑖−1

[𝑢ℎ𝑖+1 − 𝑢ℎ𝑖
ℎ𝑖

−
𝑢ℎ𝑖 − 𝑢ℎ𝑖−1

ℎ𝑖−1

]
+ 𝑎− (𝑥𝑖)

𝑢ℎ𝑖+1 − 𝑢ℎ𝑖
ℎ𝑖

+

+𝑎+(𝑥𝑖)
𝑢ℎ𝑖 − 𝑢ℎ𝑖−1

ℎ𝑖−1
+ 𝑐(𝑥𝑖)𝑢𝑖 = 𝑓 (𝑥𝑖) , 𝑖 = 1, 2, . . . , 𝑁 − 1 , (71)

where 𝑢ℎ0 = 𝐴0 , 𝑢ℎ𝑁 = 𝐴1, ℎ𝑖 = 𝑥𝑖+1 − 𝑥𝑖, and 𝑎± = (𝑎 ± |𝑎 |)/2. The nodes 𝑥𝑖, 𝑖 = 0, . . . , 𝑁, of a
layer-resolving grid are obtained explicitly by using layer-damping transformation (40), namely,

𝑥𝑖 = 𝑥ℎ (𝑖ℎ, 𝜀, 𝛼, 𝛽, 𝑝, 1/2) , 𝑖 = 0, 1, . . . , 𝑁 , ℎ = 1/𝑁 .

The calculations of problem (45) are conducted for small values of 𝜀, for each sequence of grids
with doubled numbers of grid steps: 𝑁𝑡 = 2𝑡𝑁ℎ, 𝑡 = 0, 1, . . . , where 𝑁ℎ is the number for the rough
grid. Usually 𝑁ℎ = 50, 𝑡max = 5. The numerical solution at the 𝑖th node of the grid related to 𝑁𝑡 , is
denoted by 𝑢𝑁𝑡

𝑖 , 𝑖 = 0, 1, . . . , 𝑁𝑡 .

For estimating the accuracy of the numerical algorithm, the following characteristic is introduced:

𝑟𝑡 , 𝜀 = max
0≤𝑖≤𝑁𝑡

|𝑢𝑁𝑡
𝑖 − 𝑢𝑁𝑡+1

2𝑖 | , 𝑡 = 0, 1, . . . ,

In addition to this, one more characteristic

𝑑𝑢𝑡 , 𝜀 = max
0≤𝑖≤𝑁𝑡

|𝑢𝑁𝑡

𝑖+1 − 𝑢𝑁𝑡
𝑖 | , 𝑖 = 0, 1, . . . , 𝑁𝑡 − 1 ,

is introduced, which is related to the jump of the numerical solution in the neighboring nodes.

A characteristic 𝑟𝑡 , 𝜀 is applied to estimate the order of the accuracy of the numerical solution:

𝛽1 = log2(𝑟𝑡 , 𝜀/𝑟𝑡+1, 𝜀) , 𝑡 = 0, 1, . . . , (72)

and, consequently, 𝑑𝑢𝑡 , 𝜀 to estimate the order of the numerical solution jump in the neighboring
nodes

𝛽3 = log2(𝑑𝑢𝑡 , 𝜀/𝑑𝑢𝑡+1, 𝜀) , 𝑡 = 0, 1, . . . . (73)
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Note that if a solution has neither boundary nor interior layers, then for the numerical solution of
this problem through the use of a stable scheme of order 𝑙 on the uniform grid 𝑥𝑖 = 𝑖ℎ the value 𝛽1
is close to 𝑙, while 𝛽3 is close to 1.

Theorem 3 Let 𝑢ℎ𝑖 , 𝑖 = 0, · · · , 𝑁 be a numerical solutions to problem (45) by scheme (71) on the
grid 𝑥𝑖 = 𝑥ℎ (𝑖ℎ, 𝜀, 𝛼, 𝛽, 𝑝, 1/2), 𝑖 = 0, 1, . . . , 𝑁, ℎ = 1/𝑁, where 𝑥ℎ (𝑖ℎ, 𝜀, 𝛼, 𝛽, 𝑝, 1/2) is defined
by (40) for 𝑘 = 1/2, then

|𝑢ℎ𝑖 − 𝑢(𝑥𝑖 , 𝜀) | ≤ 𝑀/𝑁 , 𝑖 = 0, · · · , 𝑁 .

This theorem is proved similarly as in ([3], Subsect. 7.4.2) and [47] for problem (4) with 𝑎(𝑥, 𝑢) =
𝑎(𝑥), 𝑎(0) = 0, 𝑎′(0) < 0, having hybrid layers.

4.1.3 Numerical Experiment

This section presents results of a numerical solution to problem (45) obtained by scheme (71) on the
grid 𝑥𝑖 = 𝑥(𝑖/𝑁, 𝜀), 𝑖 = 0, 1, . . . , 𝑁, where 𝑥(𝜉, 𝜀) : [0, 1] → [0, 1] is a coordinate transformation
(40) for 𝑙 = 𝑛 = 2.

Example For a numerical experiment we consider the following problem:

−(𝜀 + 𝑥)2 − 2𝑥𝑢′ + 𝑢 = sin(3𝜋𝑥) = 0 , 0 ≤ 𝑥 ≤ 1 ,

𝑢(0, 𝜀) = 0 , 𝑢(1, 𝜀) = 1 .

For this problem 𝑎 = −2, 𝑐(0) = 1, so 𝛽 = 0.4 and 𝛼 = 1 match the requirement 4 of theorem 2.
Thus, estimate (70) is as follows:

|𝑢 (𝑖) (𝑥, 𝜀) | ≤ 𝑀 [1 + 𝜀/(𝜀 + 𝑥)1+𝑖 + (𝜀 + 𝑥)0.4−𝑖] , 0 ≤ 𝑖 ≤ 𝑛 , 0 ≤ 𝑥 ≤ 1.

𝑡 𝑁 𝑟 ℎ𝑦𝑏𝑟𝑖𝑑 𝛽1 ℎ𝑦𝑏𝑟𝑖𝑑 𝑑𝑢 ℎ𝑦𝑏𝑟𝑖𝑑 𝛽3 ℎ𝑦𝑏𝑟𝑖𝑑
2 100 0.015582 1.580887 0.087672 0.935526
3 200 0.008472 0.879090 0.044250 0.986435
4 400 0.004414 0.940606 0.022439 0.979697
5 800 0.002294 0.944044 0.011287 0.991379

Table 1: shows the values of the characteristics 𝛽1 and 𝛽3 for 𝜀 = 10−5 , calculated using difference
scheme (71) on the grid 𝑥𝑖 = 𝑥(𝑖/𝑁, 𝜀), 𝑖 = 0, 1, . . . , 𝑁, where 𝑥(𝜉, 𝜀) : [0, 1] → [0, 1] is
a coordinate transformation (40) for 𝑙 = 𝑛 = 2, 𝑘 = 1, 𝑡 = 0.2, 𝑝 = 1.25.

5. CONCLUSION

The goal of this paper has been to persuade readers not to restrict themselves to studying problems
with exponential layers and their primitive generalizations to problems having discontinuous or
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Figure 1: shows the numerical solution on the adaptive (in red) and uniform (in blue) grids.

variable-shifted coefficients in equations. The author’s desire is to acquaint readers with the diver-
sity of layer types, and to motivate them to step up efforts to study higher-level problems having
such layers, thus coming closer to meeting the requirements of practical applications.
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