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Abstract
In this paper we show that some 1𝐷 non-Hermitian lattices can be easily transformed into
Hermitian ones. This fact clearly facilitates the analysis of the former. Our theoretical results
suggest that the results and conclusions derived earlier by other authors may not be correct.

1. INTRODUCTION

There is great interest in simple one-dimensional non-Hermitian lattices. For example, in a recent
paper Yuce[1] discussed the skin effect and quasi-stationary solutions by means of such models.
From the analysis of an exactly solvable model and numerical results for a non-solvable one he
concluded that the eigenvalues are real for open boundary conditions and complex in the case of
periodic ones. Yuce also argued about the existence of a particular solution when the number of
lattice sites is infinite and of zero-energy quasi-stationary states.

The purpose of this paper is to put forward a simple and straightforward technique that enables one
to obtain results for such lattice models that may otherwise pass unnoticed. In section 2 we show
that some tridiagonal non-Hermitian lattices are isospectral (have the same spectrum) to Hermitian
ones. In section 3 we apply this method to an exactly solvable lattice. In section 4 we analyse a
nonsolvable model. Finally, in section 5 we summarize our main results and draw conclusions.

2. GENERAL TRIDIAGONAL MATRIX REPRESENTATION

Consider a Hamltonian operator 𝐻 and an orthonormal basis set {| 𝑗⟩ , 𝑗 = 1, 2, . . . , 𝑁} such that
𝐻𝑖, 𝑗 = ⟨𝑖 | 𝐻 | 𝑗⟩ = 0 for all |𝑖 − 𝑗 | > 1. If we write the solution to the eigenvalue equation 𝐻 |𝜓⟩ =
𝐸 |𝜓⟩ as

|𝜓⟩ =
𝑁∑
𝑗=1

𝜓 𝑗 | 𝑗⟩ , (1)

then we obtain the three-term recurrence relation (TTRR)

𝐻 𝑗 , 𝑗−1𝜓 𝑗−1 +
(
𝐻 𝑗 , 𝑗 − 𝐸

)
𝜓 𝑗 + 𝐻 𝑗 , 𝑗+1𝜓 𝑗+1 = 0, 𝑗 = 1, 2, . . . , 𝑁, (2)

for the coefficients (amplitudes) 𝜓 𝑗 . We consider open boundary conditions (OBC) 𝜓0 = 𝜓𝑁+1 = 0
and periodic boundary conditions (PBC) 𝜓 𝑗+𝑁 = 𝜓𝑁 (following Yuce’s nomenclature[1]). In the
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former case we do not bother about the matrix elements 𝐻1,0 and 𝐻𝑁,𝑁+1 but in the latter it is
assumed that 𝐻1,0 = 𝐻1,𝑁 and 𝐻𝑁,𝑁+1 = 𝐻𝑁,1.

In what follows we resort to a mathematical argument used earlier by Child et al[2] and Amore and
Fernández[3] for the truncation of some particular TTRR. Although the problems studied here are
completely different, that approach may still lead to revealing results. It consists of the transforma-
tion of the solution to the TTRR as 𝜓 𝑗 = 𝑄 𝑗𝑑 𝑗 that leads to

𝐻 𝑗 , 𝑗−1𝑑 𝑗−1 +
(
𝐻 𝑗 , 𝑗 − 𝐸

)
𝑑 𝑗 + 𝐻 𝑗 , 𝑗+1𝑑 𝑗+1 = 0, 𝑗 = 1, 2, . . . , 𝑁,

𝐻 𝑗 , 𝑗−1 =
𝑄 𝑗−1

𝑄 𝑗
𝐻 𝑗 , 𝑗−1, 𝐻 𝑗 , 𝑗+1 =

𝑄 𝑗+1

𝑄 𝑗
𝐻 𝑗 , 𝑗+1, 𝐻 𝑗 , 𝑗 = 𝐻 𝑗 , 𝑗 . (3)

If we require that 𝐻∗
𝑗+1, 𝑗 = 𝐻 𝑗 , 𝑗+1 then we find that����𝑄 𝑗+1

𝑄 𝑗

����2 =
𝐻 𝑗 , 𝑗+1

𝐻∗
𝑗+1, 𝑗

. (4)

In other words: if 𝐻 𝑗 , 𝑗+1/𝐻∗
𝑗+1, 𝑗 is real and positive then the matrix H =

(
𝐻𝑖, 𝑗

)
is isospectral to the

Hermitian matrix H̃ =
(
𝐻𝑖, 𝑗

)
. If H is Hermitian then

��𝑄 𝑗+1/𝑄 𝑗

��2 = 1.

The results just developed apply directly to the OBC because 𝑑0 = 𝑑𝑁+1 = 0 but not to the PBC
that lead to 𝑑𝑁 = 𝑄0𝑑0/𝑄𝑁 .

3. EXACTLY-SOLVABLE NON-HERMITIAN LATTICE

Yuce[1] studied the one-dimensional non-Hermitian lattice

𝜓 𝑗+1 − 𝐸𝜓 𝑗 + 𝛾𝜓 𝑗−1 = 0, 𝑗 = 1, 2, . . . , 𝑁, (5)

where 𝑁 is the number of lattice sites, 𝐸 the energy and 0 ≤ 𝛾 < 1 the “non-Hermitian degree”. He
obtained a solution of the form

𝜓 𝑗 = 𝑐1Δ+ + 𝑐2Δ−, Δ± =
𝐸 ±

√
𝐸2 − 4𝛾
2

, (6)

where 𝑐1 and 𝑐2 are arbitrary constants that one determines, together with the energy, from the
boundary conditions.

For the OBC 𝜓0 = 𝜓𝑁+1 = 0 Yuce obtained the eigenvalues

𝐸𝑛 = 2√𝛾 cos
( 𝑛𝜋

𝑁 + 1

)
, 𝑛 = 1, 2, . . . , 𝑁. (7)

He argued that in the limit 𝑁 → ∞ there is another solution when Δ± < 1, where the energies form
a continuous band inside an ellipse in the complex plane:

𝐸2
𝑅

(1 + 𝛾)2 +
𝐸2
𝐼

(1 − 𝛾)2 < 1, (8)
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where 𝐸𝑅 and 𝐸𝐼 are the real and imaginary parts of 𝐸 , respectively. He stated that “this novel
solution is unique to non-Hermitian systems” and added a further analysis and interpretation of this
solution that we do not discuss here.

There is something amiss in Yuce’s arguments that passed unnoticed. The condition Δ± < 1 is
based on the assumption that Δ± are real; therefore 𝐸 = Δ+ + Δ− is also real. Consequently, Yuce’s
condition is inconsistent with the results he derived from it and it is not clear where the complex
eigenvalues that give rise rise to equation (8) come from. Unfortunately, Yuce did not indulge in an
explicit derivation of his results.

In what follows we apply the procedure outlined above with 𝑄 𝑗 = 𝛾 𝑗/2 that leads to the Hermitian
lattice

𝑑 𝑗+1 − 𝜖𝑑 𝑗 + 𝑑 𝑗−1 = 0, 𝜖 =
𝐸
√
𝛾
, 𝑗 = 1, 2, . . . , 𝑁. (9)

Since the lattice (9) is Hermitian for all 𝛾 > 0 we conclude that the eigenvalues 𝜖 are real and that
𝐸 (𝛾) =

√
𝛾𝐸 (1). This equation is reminiscent of the Hückel model for polyatomic molecules[4]

and we know that the solutions are given by

𝑐 𝑗 ,𝑛 = 𝐴 sin
(
𝑗𝑛𝜋

𝑁 + 1

)
, (10)

where 𝐴 is a normalization factor, for the eigenvalues (7). This analysis already shows that one does
not expect complex eigenvalues for the OBC and that the energy band is restricted to −2√𝛾 < 𝐸 <
2√𝛾 for all 𝛾 > 0 when 𝑁 → ∞.

4. NONSOLVABLE MODEL

In this section we consider a Hamiltonian operator of the form

𝐻 =
𝑁−1∑
𝑗=1

(
𝑢 𝑗 | 𝑗⟩ ⟨ 𝑗 + 1| + 𝑣 𝑗 | 𝑗 + 1⟩ ⟨ 𝑗 |

)
+

𝑁∑
𝑗=1

𝑤 𝑗 | 𝑗⟩ ⟨ 𝑗 | . (11)

We assume that the parameters 𝑢 𝑗 , 𝑣 𝑗 and 𝑤 𝑗 are real and 𝑢 𝑗 ≠ 𝑣 𝑗 that contains some of Yuce’s
models as particular cases. It is clear that we can apply the results of section 2 with 𝑢 𝑗 = 𝐻 𝑗 , 𝑗+1,
𝑣 𝑗 = 𝐻 𝑗+1, 𝑗 and 𝑤 𝑗 = 𝐻 𝑗 , 𝑗 . The coefficients 𝜓 𝑗 satisfy the three-term recurrence relation

𝑢 𝑗𝜓 𝑗+1 +
(
𝑤 𝑗 − 𝐸

)
𝜓 𝑗 + 𝑣 𝑗−1𝜓 𝑗−1 = 0, 𝑗 = 1, 2, . . . , 𝑁, (12)

and for the time being we restrict ourselves to the OPC 𝜓0 = 𝜓𝑁+1 = 0.

The tridiagonal matrix that gives rise to this secular equation is symmetric if

𝑄2
𝑗+1 =

𝑣 𝑗

𝑢 𝑗
𝑄2

𝑗 , 𝑗 = 1, 2, . . . , 𝑁 − 1. (13)

Therefore, we conclude that if 𝑢 𝑗𝑣 𝑗 > 0 then the secular equation (12) is isospectral to the symmetric
one √

𝑢 𝑗𝑣 𝑗𝑑 𝑗+1 +
(
𝑤 𝑗 − 𝐸

)
𝑑 𝑗 +

√
𝑢 𝑗−1𝑣 𝑗−1𝑑 𝑗−1 = 0. (14)
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It is clear that we are in the presence of what has been called generalized Hermiticity[5] or quasi-
Hermiticity[6]. The argument above shows that the non-Hermitian Hamiltonian operator (11) is
isospectral to an Hermitian one and, consequently, its eigenvalues are real[7]. This fact clearly
explains why Yuce found that the eigenvalues in his open-chain models were real. However, we
cannot extend that reasoning to periodic boundary conditions (𝜓𝑁+1 = 𝜓1) because 𝑑𝑁+1 = 𝑑1
requires 𝑄1/𝑄𝑁+1 = 1 that is not always consistent with equation (13) as argued also in section 2.
In the model given by Yuce’s equation (9) the parameters 𝑢𝑛 = 𝑇𝑛 = 1 + (−1)𝑛𝛿, −1 < 𝛿 < 1, are
the alternating hopping amplitudes, 𝑣𝑛 = 𝛾𝑇𝑛, 0 ≤ 𝛾 < 1, and 𝑤𝑛 = 0. Consequently, the sufficient
condition for real eigenvalues developed above becomes 𝛾𝑇2

𝑛 > 0; that is to say, it is sufficient that
𝑇𝑛 ≠ 0 and 𝛾 > 0.

We can easily derive another general result about the eigenvalues and eigenvectors of the Hamilto-
nian operator (11) when 𝑤 𝑗 = 𝑤 for all 𝑗 . In this particular case we can rewrite the secular equation
(12) as

𝑢 𝑗𝜓 𝑗+1 − 𝜖𝜓 𝑗 + 𝑣 𝑗−1𝜓 𝑗−1 = 0, (15)

where 𝜖 = 𝐸 − 𝑤. If we substitute 𝜓 𝑗 = (−1) 𝑗𝜓 𝑗 then this equation becomes

𝑢 𝑗𝜓 𝑗+1 + 𝜖𝜓 𝑗 + 𝑣 𝑗−1𝜓 𝑗−1 = 0. (16)

We conclude that if 𝜓𝑘 is a column eigenvector of the matrix representation H of 𝐻 with eigenvalue
𝐸𝑘 = 𝜖𝑘 + 𝑤 then 𝜓𝑘 is an eigenvector with eigenvalue 𝐸𝑘′ = −𝜖𝑘 + 𝑤. More precisely: for 𝑁 even
we have 𝜖1 < 𝜖2 < . . . < 𝜖 𝑁

2
< 0 < 𝜖 𝑁

2 +1 = −𝜖 𝑁
2
< . . . < 𝜖𝑁 = −𝜖1, while 𝜖1 < 𝜖2 < . . . < 𝜖 𝑁+1

2
=

0 < 𝜖 𝑁+1
2 +1 = −𝜖 𝑁+1

2 −1 < . . . < 𝜖𝑁 = −𝜖1 for 𝑁 odd. The eigenvalues in Yuce’s FIGURE 2, for
𝑁 = 40 lattice sites exhibit the former distribution for 𝑤 = 0.

We can easily obtain some additional analytical results about Yuce’s Hamiltonian operator (9). If H
is the 𝑁 × 𝑁 matrix representation of this Hamiltonian and I is the 𝑁 × 𝑁 identity matrix we have

det(H) = (−𝛾)𝑁/2(𝛿 − 1)𝑁 ,

det(H − 𝐸I) = 𝐸2
(
𝐸2 − 4𝛾

) 𝑁
2 −1

, 𝛿 = 1,

det(H − 𝐸I) =
(
𝐸2 − 4𝛾

) 𝑁
2
, 𝛿 = −1, (17)

for 𝑁 even and
det(H − 𝐸I) = −𝐸

(
𝐸2 − 4𝛾

) 𝑁−1
2

, 𝛿 = ±1, (18)

for 𝑁 odd. From equation (17) we draw the following conclusions: first, there are zero-energy
states only for 𝛿 = 1, second, only two eigenvalues approach zero when 𝛿 → 1, third, at 𝛿 = ±1
all the nonzero eigenvalues become 𝐸 = ±2√𝛾. The two eigenvalues that vanish as 𝛿 → 1 are 𝐸 𝑁

2
and 𝐸 𝑁

2 +1 = −𝐸 𝑁
2
. The analysis of the eigenvalues and eigenvectors for 𝑁 = 3, 4, 5, 6 suggests

that the matrix representation of 𝐻 at 𝛿 = ±1 is normal (diagonalizable). These analytical results
are reflected in Yuce’s FIGURE 2 (note that 2√𝛾 ≈ 0.89 when 𝛾 = 0.2). There is, however, an
important discrepancy: present analytical results disagree with Yuce’s estimate that zero-energy
quasi-stationary states exist for −0.67 < 𝛿 < 0 when 𝛾 = 0.2. The analytical expression for det(H)
in equation (17) clearly shows that there cannot be zero eigenvalues unless 𝛿 = 1.
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5. CONCLUSIONS

In this paper we have shown that some non-Hermitian lattices are isospectral to Hermitian ones
which explains why the former exhibit real eigenvalues. Present analysis is relevant for OBC but
it is not so useful in the case of PBC unless some additional restrictions on the matrix elements
take place. Our theoretical expressions suggest that some results (and, consequently, the physical
conclusions derived from them) on non-Hermitian lattices obtained earlier by other authors may not
be correct.
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