
World Journal of Physics; Research 1 (1) 35-41 Received 21-03-2023; Accepted 10-05-2023; Published 17-05-2023

Generalized Hertz Vector in the Dissipative Electrodynamics
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Abstract

In the electromagnetic theory, the Hertz vector reduces the number of potentials in the free
fields. The further advantage of this potential is that it is much easier to solve particular
radiation processes. It indicates that the related method is sometimes more effective than
the scalar and vector potential-based relations. Finally, the measurable field variables, the
electric and magnetic fields, can be deduced by direct calculation from the Hertz vector.
However, right now, the introduction of the Hertz vector operates if the conductive current
density j = 𝜎E is neglected. We suggest a generalization by the conductive currents, i.e.,
when the electromagnetic field dissipates irreversibly to Joule heat. The presented procedure
enables us to introduce also the Lagrangian formulation of the discussed dissipated electro-
magnetic waves. It paves a new way involving damping physical fields in a thermodynamic
frame.

Keywords: Dissipative electrodynamics, Generalized Hertz vector, Irreversible loss, La-
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1. MOTIVATION

The material conductivity strongly effects the electromagnetic wave propagation which interaction
may cause an energy loss but it may allow us to get information about the property of matter. The
microwave cavity perturbation experiments [1], are generally used to explore the material structure
measuring the resonance frequency [2]. Wide range of electric conductive novel materials can be
studied like Li4C60 superionic conductor [3], single wall carbon nanotubes [4], with these high accu-
racy measurements [5]. It seems that this experimental setup is applicable to study superconductor
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powders [6]. We can conclude from the results that the heating effects can be also in the focus
of the observations. The electromagnetic wave and thermodynamic heat couping appears in the
so-called coupled electromagnetic and thermal skin effect problems [7], which is a boundary layer
approximation. This effect may play an important role in low dimensional phenomena. Similarly,
the surface impedance problems [] may give unexpected physical effects in the electrodynamic and
thermal interactions with the quantum property of materials. Hopefully, the presented generalization
of the Hertz vector can be applied to study such physics as superconducting films in the surface
impedance measurements [10].

Based on these physical motivations our aim is to formulate the electrodynamics of the conductive
materials, treating by a single potential function. This potential can help us to couple the different
fields like electric and thermal conductions. Hertz introduced this vector field by which he deduced
the free electromagnetic field. Here, we show that the generalized Hertz vector field makes allow
the description of energy dissipation related to the conductive currents. This generalization is the
first step in the formulation by which the electrodynamic field may be coupled with the other fields
in the future.

2. GENERALIZED VECTOR POTENTIAL, HERTZ VECTOR AND
MODIFIED LORENZ CONDITION

Certain mathematical operators, such as the first-time derivatives, can bring irreversible and dissi-
pative behavior in theory, as in the case of thermal conduction and the damped oscillator [11–14].
This minor change in the structure of equations causes a particular challenge in the construction of
Lagrangian [15–18]. Now, are going to show you that the Joule heat brings another twist to the
Lagrangian formulation of the electromagnetic theory.

In the case of free electrodynamic fields, the introduction of vector potential is essential to deduce
from Lagrangian formulation since the Maxwell equations contain non-selfadjoint operators (first-
time derivative and divergence). The vector and scalar potentials generate the measurable physical
variables. Mathematically these potentials are similarly applied, such as in the previous dissipative
processes [11–13]. In general, we can recognize that the introduction of the potentials is independent
of dissipation. (For a detailed comparative study of the requirements, please consult with Ref. [19].)

Originally, Faraday introduced the term − ¤A as an electrostatic force relating to the so-called “elec-
trotonic state” [20, 21]. Fortunately, the usage of the scalar and vector potential is also possible in
the case of the existence of charges and currents [22, 23].

This fact shows that we can deduce the free electromagnetic field from a single generator field
[24, 25]. There are electromagnetic problems that cannot be solved or are complicated to elabo-
rate without the Hertz vector [26]. The symmetry of the Maxwell equations allow an alternative
introduction of the Hertz vector involving its gauge symmetries [27–29]. Ornigotti et al. showed
that due to the transversality of the electromagnetic wave, the Hertz vector can be expressed as a
product of a constant polarization vector and a scalar potential [30]. It may give the next physical
conception to the Hertz vector formulations.
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We aim to achieve the Hamiltonian structure of Joule heat-caused dissipative electrodynamics. In
the presence of electrically conductive materials the Maxwell equations are

1
𝜇0

curlB = 𝜎E + 𝜀0 ¤E, (1a)

curlE = − ¤B, (1b)
divE = 0, (1c)
divB = 0. (1d)

The j = 𝜎E term leads to the Joule heat generation. From a thermodynamical viewpoint, its
importance is unquestionable. The difficulty is how to generalize the above formalism for the
present case [25]. It can be seen that the new term, 𝜎E, is troublesome difficulties. Let us introduce
a generalized definition of the vector potential A𝑚 and the Hertz vector, Π𝑚 involving the term
related to the current

A𝑚 = 𝜀0𝜇0 ¤Π𝑚 + 𝜎𝜇0Π𝑚,

𝜑 = −divΠ𝑚, (2)

and the modified Lorenz condition

divA𝑚 + 𝜀0𝜇0 ¤𝜑 + 𝜎𝜇0𝜑 = 0. (3)

Here, we can point out the role of the Hertz vector Π𝑚. The formulated field quantities E and B are

E = −𝜀0𝜇0 ¥Π𝑚 − 𝜎𝜇0 ¤Π𝑚 + grad divΠ𝑚,

B = 𝜀0𝜇0curl ¤Π𝑚 + 𝜎𝜇0curlΠ𝑚. (4)

We can conclude that a single generator space is still sufficient to produce gauge spaces. The
connections between the measurable field quantities E, and B and the potentials A𝑚 and 𝜑 remain
to have the same physical meaning

E = − ¤A𝑚 − grad𝜑,
B = curlA𝑚. (5)

One can prove that all of the field quantities complete the requirement of damping wave (telegra-
pher) equation

0 = 𝜀0𝜇0 ¥G + 𝜎𝜇0 ¤G − ∇2G, (6)

where G can be E, B, A𝑚, 𝜑, and Π𝑚, without any restriction. By the first equation of Eq. (4), the
electronic field E can be expressed in an alternative form

E = curlcurlΠ𝑚. (7)

3. THE LAGRANGIAN FORMULATION

We need to find a suitable Lagrange density function if we would like to deduce the field equation
and exploit the Hamilton’s principle. The construction is not self-explanatory. However, if it is pos-
sible, the existence of Lagrangian is of fundamental importance. Now, the formulated Lagrangian
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is

𝐿 =
1
2
𝜀0

(
− ¤A𝑚 − grad𝜑

)2 − 1
2𝜇0

(curlA𝑚)2 + 𝜎curlΠ𝑚curlA𝑚

− 1
2
𝜎2𝜇0 (curlΠ𝑚)2 − 1

2
𝜀0Π𝑚curlcurl∇2Π𝑚 − 1

2
𝜀2

0𝜇0
(
curl ¤Π𝑚

)2
, (8)

which pertains to a dissipative process in electrodynamics. The elaboration of variation is necessary
for each field function as variables A𝑚, 𝜑, and Π𝑚. The exactness of Lagrangian is complete if we
obtain the relevant equations of motion, or field equations.

Applying the mathematical rules of variational calculus, the variation with respect to the variable
A𝑚 results the first Maxwell equation (1a)

0 = − 𝜕

𝜕𝑡

𝜕𝐿

𝜕 ¤A𝑚

+ curl 𝜕𝐿

𝜕curlA𝑚

= 𝜀0
𝜕

𝜕𝑡

(
− ¤A𝑚 − grad𝜑

)
− 1

𝜇0
curlcurlA𝑚 + 𝜎curlcurlΠ𝑚

0 = 𝜀0 ¤E − 1
𝜇0

curlB + 𝜎E. (9)

We arrive at the third Maxwell equation (1c) by the variation 𝜑

0 = −div 𝜕𝐿

𝜕grad𝜑
= 𝜀0div

(
− ¤A𝑚 − grad𝜑

)
= 𝜀0divE. (10)

The variation with respect to Π𝑚 results the Euler-Lagrange equation

0 =
𝜕𝐿

𝜕Π𝑚
+ curl 𝜕𝐿

𝜕curlΠ𝑚
+ curlcurl∇2 𝜕𝐿

𝜕curlcurl∇2Π𝑚
− curl 𝜕

𝜕𝑡

𝜕𝐿

𝜕curl ¤Π𝑚

= −𝜀0curlcurl∇2Π𝑚 + 𝜎curlcurlA𝑚 − 𝜎2𝜇0curlcurlΠ𝑚 + 𝜀2
0𝜇0curlcurl ¥Π𝑚. (11)

Applying the definition of generalized vector potential A𝑚 in Eq. (2), and after the simplifications,
an expected telegrapher’s equation appears for the generalized Hertz vector Π𝑚:

0 = 𝜀0𝜇0 ¥Π𝑚 + 𝜎𝜇0 ¤Π𝑚 − ∇2Π𝑚. (12)

We can conclude that the Lagrangian in Eq. (8) involves and describes correctly the electric con-
ductivity related term. Due to the Ohmic resistance Joule heat dissipation appears in the considered
system. As a conclusion, we may say that this irreversible behavior of the electromagnetic theory
is within the frame of the Hamilton’s principle.

4. THE ELECTROMAGNETIC ENERGY LOSS

As the Joule dissipation is involved in the Lagrangian, so it needs to contribute to the exposition of
the Hamiltonian. This formulation of the loss of electromagnetic field transforming into the thermal
field opens a novel way to couple these classical phenomena. The building up the Hamiltonian have
the usual mathematical steps.
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The canonical momenta exist to those field quantities that stand as pure time derivatives in the
Lagrangian. So, in the present case, we can define the canonical momentum just for A𝑚, as is
general in the Hamiltonian formulation

𝑃A𝑚 =
𝜕𝐿

𝜕 ¤A𝑚

= −𝜀0
(
− ¤A𝑚 − grad𝜑

)
. (13)

Thus the Hamiltonian of the dissipative electromagnetic field is

𝐻 = 𝑃A𝑚
¤A𝑚 − 𝐿

= −𝜀0
(
− ¤A𝑚 − grad𝜑

) ¤A𝑚 − 1
2
𝜀0

(
− ¤A𝑚 − grad𝜑

)2 + 1
2𝜇0

(curlA𝑚)2 − 𝜎curlΠ𝑚 · curlA𝑚

+ 1
2
𝜎2𝜇0 (curlΠ𝑚)2 + 1

2
𝜀0Π𝑚curlcurl∇2Π𝑚 + 1

2
𝜀2

0𝜇0
(
curl ¤Π𝑚

)2
, (14)

Since the Hamiltonian does not depend on time explicitly, thus its volume integral is constant, i.e.,
the totel energy is conserved during the processes. A simpler expression would be more practical
to identify the energy terms. Applying the relations between the measurable physical quantities
and the potentials, the Maxwell equations, the Lorenz condition, and taking into account that the
Hamiltonian is unambiguous up to a divergence or a time derivative we obtain a compact formula

𝐻 =
1
2
𝜀0E2 + 1

2𝜇0
B2 − 1

2
𝜎2𝜇0 (curlΠ𝑚)2 . (15)

The first two terms give the electric and magnetic field energies. The third term pertains to the
dissipative Joule heat loss caused by the conductive current. It seems the generalized Hertz vector
has a particular role in the conductive eletromagnetic energy loss process. If an electric conductor
does not take place in space than the electromagnetic energy remains constant.

5. SUMMARY

We pointed out that the Hertz vector can have a generalized form by which the Maxwell equations
involving the conductive currents can be successfully produced. In this way, the Joule dissipa-
tion appears on a potential level. This generalization of the Hertz vector enables us to create
the Lagrangian description of such an electromagnetic field in which we can handle the loss of
electromagnetic energy. The calculated Hamiltonian of the process clearly shows that the elec-
tromagnetic field energy dissipates into Joule heat. If there is no conductive current in the space,
the electromagnetic energy is conserved during the process. We hope that based on the presented
Lagrangian formulation, the electromagnetic and the thermal fields can couple, by which further
studies may be possible in the case of electromagnetic radiation in media. We believe that beyond
the mentioned cases in the motivation [2–10], the method can even be extended to materials with
magnetic behavior [31].
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