ISSN : 2583-939X

Numerical simulation and analytical modelling of self-heating in FDSOI MOSFETs down to very deep cryogenic temperatures

Original Research (Published On: 14-Oct-2023 )
Numerical simulation and analytical modelling of self-heating in FDSOI MOSFETs down to very deep cryogenic temperatures
DOI : 10.56439/WJP/2023.1110

gerard ghibaudo

World Jour. of Phys., 1 (2):87-109

gerard ghibaudo : IMEP-LAHC, Minatec, Grenoble, France

Download PDF Here

DOI: 10.56439/WJP/2023.1110

Article History: Received on: 11-Sep-23, Accepted on: 12-Oct-23, Published on: 14-Oct-23

Corresponding Author: gerard ghibaudo

Email: ghibaudo@minatec.inpg.fr

Citation: gerard ghibaudo (2023). Numerical simulation and analytical modelling of self-heating in FDSOI MOSFETs down to very deep cryogenic temperatures. World Jour. of Phys., 1 (2 ):87-109


Abstract

    

Self-heating (SHE) TCAD numerical simulations have been performed, for the first time, on 30nm FDSOI MOS transistors at extremely low temperatures. The self-heating temperature rise dTmax and the thermal resistance Rth are computed as functions of the ambient temperature Ta and the dissipated electrical power (Pd), considering calibrated silicon and oxide thermal conductivities. The characteristics of the SHE temperature rise dTmax(Pd) display sub-linear behavior at sufficiently high levels of dissipated power, in line with standard FDSOI SHE experimental data. It has been observed that the SHE temperature rise dTmax can significantly exceed the ambient temperature more easily at very low temperatures. Furthermore, a detailed thermal analysis of the primary heat flows in the FDSOI device has been conducted, leading to the development of an analytical SHE model calibrated against TCAD simulation data. This SHE analytical model accurately describes the dTmax(Pd) and Rth(Ta) characteristics of an FDSOI MOS device operating at extreme low ambient temperatures. These TCAD simulations and analytical models hold great promise for predicting the SHE and electro-thermal performance of FDSOI MOS transistors against ambient temperature and dissipated power.

Statistics

   Article View: 598
   PDF Downloaded: 17